DOI QR코드

DOI QR Code

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution

전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발

  • Luu, Tran Le (Department of Mechatronics & Sensor Systems Technology, Vietnamese German University) ;
  • Kim, Choonsoo (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU)) ;
  • Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
  • 트란 루 레 (베트남 독일 대학교 메카트로닉스-센서 시스템 학과) ;
  • 김춘수 (서울대학교 화학생물공학부 화학공정 신기술 연구소 & 아시아에너지환경지속가능발전 연구소) ;
  • 윤제용 (서울대학교 화학생물공학부 화학공정 신기술 연구소 & 아시아에너지환경지속가능발전 연구소)
  • Received : 2017.07.25
  • Accepted : 2017.09.04
  • Published : 2017.10.31

Abstract

$RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Keywords

References

  1. A. Ananth, S. Dharaneedharan, M. Gandhi, M. Heo, Y. Mok (2013). Novel $RuO_2$ nanosheets - Facile synthesis, characterization and application, Chemical Chem. Eng. J. 223, 729-736. https://doi.org/10.1016/j.cej.2013.03.045
  2. A. Bard, L. Faulkner (2001). Electrochemical methods - Fundamentals and applications, Wiley, New York, pp. 226-261
  3. C. Malmgren, A. K. Eriksson, A. Cornell, J. Backtrom, S. Eriksson, H. Olin. (2010). Nanocrystallinity in $RuO_2$ coatings - Influence of precursor and preparation temperature, Thin Solid Films. 518, 3615-3618. https://doi.org/10.1016/j.tsf.2009.09.065
  4. D. Music, J. Breunung, S. Mraz, J. Schneider (2012). Role of $RuO_3$ for the formation of $RuO_2$ nanorods, Appl. Phys. Lett. 100, 033108 https://doi.org/10.1063/1.3677665
  5. G. Zhao, L. Zhang, K. Sun, H. Li (2014). Free-standing $Pt@RuO_2{\cdot}xH_2O$ nanorod arrays on Si wafers as electrodes for methanol electro-oxidation, J. Power Sources. 245, 892-897. https://doi.org/10.1016/j.jpowsour.2013.07.053
  6. H. Friedrich, P. Jongh, A. Verkleij, K. Jong (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials, Chem. Rev. 109, 1613-1626. https://doi.org/10.1021/cr800434t
  7. H. P. Klug, L. E. Alexander (1974). X-ray Diffraction Procedures, Wiley, New York.
  8. J. Chou, Y. Chen, M. Yang, Y. Chen, C. Lai, H. Chiu, C. Lee, Y. Chueh, J. Gan (2013). $RuO_2/MnO_2$ core-shell nanorods for supercapacitors, J. Mater. Chem. A. 1, 8753-8759. https://doi.org/10.1039/c3ta11027c
  9. J. Han, S. Lee, S. Kim, S. Han, C. Hwang, C. Dussarrat, and J. Gatineau (2010). Growth of $RuO_2$ thin films by pulsed-chemical vapor deposition using $RuO_4$ precursor and 5% $H_2$ reduction gas, Chem. Mater. 22, 5700-5706. https://doi.org/10.1021/cm101694g
  10. J. Jeong, C. Kim, J. Yoon (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43, p 895-901. https://doi.org/10.1016/j.watres.2008.11.033
  11. J. Osmana, J. Crayston, A. Pratt, D. Richens (2008). $RuO_2-TiO_2$ mixed oxides prepared from the hydrolysis of the metal alkoxides, Mater. Chem. Phys. 110, 256-262. https://doi.org/10.1016/j.matchemphys.2008.02.003
  12. J. Tiwari, R. Tiwari, K. Kim, Zero-dimensional (2012). one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater Sci. 57, 724-803. https://doi.org/10.1016/j.pmatsci.2011.08.003
  13. L. Dong and J. Jiao (2006). Dielectrophoretic fabrication and electron microscopy characterization of one-dimensional-nanomaterial-based devices, Microscopy and Microanalysis. 12, 482-483. https://doi.org/10.1017/S1431927606062842
  14. M. CaO, Y. Wang, C. Guo, Y. Qi, C. Hu, E. Wang (2004). A simple route towards CuO nanowires and nanorods, J. Nanosci. Nanotechnol. 4, 824-828. https://doi.org/10.1166/jnn.2004.822
  15. M. Gopiraman, S. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu and I. Kim (2013). Facile and homogeneous decoration of $RuO_2$ nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds, Catal. Sci. Technol. 3, 1485. https://doi.org/10.1039/c3cy20735h
  16. P. Schmittinger (2000). Chlorine: principle and industrial practice, Wiley, New York, 21-34.
  17. R. Burrows, D. Denton and J. Harrision (1978). Chlorine and oxygen evolution on various compositions of $RuO_2/TiO_2$ electrodes, Electrochim. Acta. 23, 493-500. https://doi.org/10.1016/0013-4686(78)85026-9
  18. R. Chen, V Trieu, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann and R. Hempelmann (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys. 14, 7392-7399. https://doi.org/10.1039/c2cp41163f
  19. R. Chen, V. Trieu, H. Natter, J. Kintrup, A. Bulan, R. Hempelmann (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies, Electrochem. Commun. 22, 16-20. https://doi.org/10.1016/j.elecom.2012.05.021
  20. R. Liu, J. Duay and S. Lee (2011). Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun. 47, 1384-1404. https://doi.org/10.1039/C0CC03158E
  21. R. Kotz and S. Stuck (1986). Stabilization of $RuO_2$ by $IrO_2$ for anodic oxygen evolution in acid media, Electrochim. Acta. 31, 1311-1316. https://doi.org/10.1016/0013-4686(86)80153-0
  22. S. Ardizzone, G. Fregonara, S. Trasatti (1990). Inner and outer active surface of $RuO_2$ electrodes, Electrochim. Acta. 35, 263-267. https://doi.org/10.1016/0013-4686(90)85068-X
  23. S. Neupane, G. Kaganas, R. Valenzuela, L. Kumari, X. Wang, W. Li. (2011). Synthesis and characterization of ruthenium dioxide nanostructures, J. Mater Sci. 46, 4803-4811. https://doi.org/10.1007/s10853-011-5390-2
  24. S. Trasatti (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta. 29, 1503-1512. https://doi.org/10.1016/0013-4686(84)85004-5
  25. Tran Le Luu, Jiye Kim, Jeyong Yoon (2015). hysicochemical properties of $RuO_2$ and $IrO_2$ electrodes affecting chlorine evolutions, Journal of J. Ind. Eng. Chem. vol 21, 400-404. https://doi.org/10.1016/j.jiec.2014.02.052
  26. V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic (1999). $RuO_2-TiO_2$ coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction, Colloids Colloids Surf. A. 157, 269-274. https://doi.org/10.1016/S0927-7757(99)00094-1
  27. V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli (2005). On the deactivation mechanisms of $RuO_2-TiO_2/Ti$ anodes prepared by the sol-gel procedure, J. Electroanal. Chem. 579, 67-76. https://doi.org/10.1016/j.jelechem.2005.01.026
  28. V. Srinivasan, P. Arora, P. Ramadass (2006). Report on the electrolytic industries for the year 2004, Journal of the J. Electrochem. Soc. 153, K1. https://doi.org/10.1149/1.2172468
  29. V. Trieu, B. Schleya, H. Nattera, J. Kintrup, A. Bulan (2012). R. Hempelmann, $RuO_2$-based anodes with tailored surface morphology for improved chlorine electroactivity, Electrochim. Acta. 78, 188-194. https://doi.org/10.1016/j.electacta.2012.05.122
  30. Y. Inoue, M. Uota, M. Uchigasaki, S. Nishi, T. Torikai, T. Watari, M. Yada (2008). Helical Ruthenium compound templated by 1-Dodecanesulfonate assemblies and its conversion into helical Ruthenium oxide and helical metallic Ruthenium, Chem. Mater. 20, 5652-5656. https://doi.org/10.1021/cm801398u
  31. Y. Lee, B. Kim, H. Jung, J. Shim, Y. Lee, C. Lee, J. Baik, W. Kim, M. Kim (2012). Hierarchically grown single crystalline $RuO_2$ nanorods on vertically aligned few walled carbon nanotubes, Mater. Lett. 89, 115-117. https://doi.org/10.1016/j.matlet.2012.08.097
  32. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan (2003). One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15, 353-389. https://doi.org/10.1002/adma.200390087
  33. Z. Li, Y. Xiong, Y. Xie (2003). Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem. 42, 8105-8109. https://doi.org/10.1021/ic034029q