• Title/Summary/Keyword: chloride reduction

Search Result 476, Processing Time 0.025 seconds

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Effects of Dietary Education on Low-sodium Diet Adaptation (식생활교육이 저나트륨식 적응에 미치는 영향)

  • Kim, Hae Young;Kim, Juhyeon
    • Journal of the Korean Society of Food Culture
    • /
    • v.29 no.2
    • /
    • pp.212-221
    • /
    • 2014
  • Korean style DASH (Dietary Approaches to Stop Hypertension) and a dietary education program for sodium reduction were developed. Reduced sodium diets (15 and 30% reductions) were developed from general diets for 3 consecutive weeks from Monday through Saturday. Subjects (19 total) were classified into two groups according to dietary education. Experimental period was from June 24 to July 23, 2012. Total sum of adaptation scores for low sodium diets significantly increased in the group that underwent dietary education compared to that without (p<0.05). After the experiment, both groups showed significantly increased values in terms of food group balance, sodium-related nutrition knowledge, attitude, and practice by paired t-test. Especially, group that underwent dietary education showed significantly higher values for attitudes by ANCOVA pre-test as a variation (p<0.01). For the results of the nutrient intake survey, group that underwent dietary education showed significantly increased values for dietary fiber (p<0.01), vitamin A (p<0.001), vitamin K (p<0.001), vitamin C (p<0.01), Folic acid (p<0.001), vitamin B12 (p<0.01), calcium (p<0.01), iron (p<0.05), and zinc (p<0.05) and significantly decreased values for sodium (p<0.05) and chloride (p<0.005). Subjects adapted to reduced sodium diets showed apparent improvements in sodium-related knowledge, attitude, practice and intake of nutrient, and these improvements were even higher in the group that underwent dietary education compared to that without. Thus, adaptation to low sodium diet combined with dietary education can improve dietary habits.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.

Formation of Copper Seed Layers and Copper Via Filling with Various Additives (Copper Seed Layer 형성 및 도금 첨가제에 따른 Copper Via Filling)

  • Lee, Hyun-Ju;Ji, Chang-Wook;Woo, Sung-Min;Choi, Man-Ho;Hwang, Yoon-Hwae;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.335-341
    • /
    • 2012
  • Recently, the demand for the miniaturization of printed circuit boards has been increasing, as electronic devices have been sharply downsized. Conventional multi-layered PCBs are limited in terms their use with higher packaging densities. Therefore, a build-up process has been adopted as a new multi-layered PCB manufacturing process. In this process, via-holes are used to connect each conductive layer. After the connection of the interlayers created by electro copper plating, the via-holes are filled with a conductive paste. In this study, a desmear treatment, electroless plating and electroplating were carried out to investigate the optimum processing conditions for Cu via filling on a PCB. The desmear treatment involved swelling, etching, reduction, and an acid dip. A seed layer was formed on the via surface by electroless Cu plating. For Cu via filling, the electroplating of Cu from an acid sulfate bath containing typical additives such as PEG(polyethylene glycol), chloride ions, bis-(3-sodiumsulfopropyl disulfide) (SPS), and Janus Green B(JGB) was carried out. The desmear treatment clearly removes laser drilling residue and improves the surface roughness, which is necessary to ensure good adhesion of the Cu. A homogeneous and thick Cu seed layer was deposited on the samples after the desmear treatment. The 2,2'-Dipyridyl additive significantly improves the seed layer quality. SPS, PEG, and JGB additives are necessary to ensure defect-free bottom-up super filling.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Effects of coagulation-UF pretreatment on pressure retarded osmosis membrane process (응집-UF 전처리 공정이 압력지연삼투 공정에 미치는 영향)

  • Goh, Gilhyun;Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.285-292
    • /
    • 2021
  • Osmotic power is to produce electric power by using the chemical potential of two flows with the difference of salinity. Water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. In a pressure retarded osmosis (PRO) process, river water and wastewater are commonly used as low salinity feed solution, whereas seawater and brine from the SWRO plant are employed as draw solution. During the PRO process using wastewater effluent as feed solution, PRO membrane fouling is usually caused by the convective or diffusive transport of PRO which is the most critical step of PRO membrane in order to prevent membrane fouling. The main objective of this study is to assess the PRO membrane fouling reduction by pretreatment to remove organic matter using coagulation-UF membrane process. The experimental results obtained from the pretreatment test showed that the optimum ferric chloride and PAC dosage for removal of organic matter applied for the coagulation and adsorption process was 50 mg/L as FeCl3 (optimum pH 5.5). Coagulation-UF pretreatment process was higher removal efficiency of organic matter, as also resulting in the substantial improvement of water flux of PRO membrane.

Study on the Effect of (Dodecyldimethylammonio)propanesulfonate Zwitterionic Surfactant on Cu Electrodeposition (구리전해도금에서 양쪽이온성 계면활성제인 (Dodecyldimethylammonio)propanesulfonate의 영향 연구)

  • Shin, Yeong Min;Kim, In Ui;Bang, Daesuk;Cho, Sung Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, the effect of zwitterionic surfactant on Cu electrodeposition was investigated through cyclic voltammetry. With the addition of (dodecyldimethylammonio)propanesulfonate (DDAPS) as a representative zwitterionic surfactant in the electrolyte for Cu electrodeposition, the electrochemical Cu2+ reduction was inhibited on Cu and glassy carbon electrodes. Its inhibition effect was similar to that of cationic surfactant rather than anionic surfactant. Moreover, DDAPS interacted with chloride ion and exhibited the mass transfer-dependent inhibition behavior, which indicates that its inhibition function is associated with the formation of its surface aggregates on anion-covered Cu surface. In addition, adsorbed DDAPS slightly reduced the surface roughness of Cu electrodeposits. These characteristics were similar to those of cationic surfactant, but less obvious. It means the effect of DDAPS on Cu electrodeposition originates from the cationic head group which is shield by anionic head group.

A Review Based on Ion Separation by Ion Exchange Membrane (이온교환막을 통한 이온분리에 대한 총설)

  • Assel, Sarsenbek;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).

Chemical Components and Biological Activities of Red Onion Powder (붉은 양파 분말의 화학성분 및 생리활성)

  • Jang, Joo-Ri;Kwon, Sun-Jin;Lim, Sun-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.6
    • /
    • pp.749-755
    • /
    • 2009
  • We investigated the chemical components of red onion powder dried using the low temperature vacuum method and the inhibitory effects of solvent extracts of the dried red onion powder on the growth of HT-1080 human fibrosarcoma and HT-29 human colon cancer cells and $H_2O_2$-induced oxidative stress. The moisture content of the dried red onion powder was 17.95%, while the vitamin C content was 96 mg/100 g and the total phenols content was 39.1 mg/mL. The inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts of the red onion powder on the growth of HT-1080 and HT-29 cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was greater on the growth of HT-29 cells, while the A+M extracts had a higher inhibitory effect than the MeOH extracts. Treatment with the hexane, 85% aq. methanol, butanol and water fractions of the extract led to significant inhibition of the growth of both cancer cell lines (p<0.05). Among the fractions, the hexane and 85% aq. methanol fractions showed a greater inhibitory effect. To determine the protective effect on $H_2O_2$-induced oxidative stress, a DCFH-DA (dichlorodihydrofluorescin diacetate) assay was conducted. All fractions, including the crude extracts of dried red onion, appeared to lead to a significant reduction in the levels of intracellular reactive oxygen species (ROS), and these reductions occurred in a dose dependent fashion (p<0.05). Among the fractions, the 85% methanol fraction showed the greatest protective effect on the production of lipid peroxides.

Feasibility of Natural Attenuation for TCE Anaerobic Reductive Dechlorination Using Microsized Corn-Oil Droplet as an Activator (Microsized Corn-Oil Droplet (MOD)의 Trichloroethylene (TCE) 생물학적 탈염소화 분해 자연저감 완효성 촉진제 적용성 평가)

  • Kyungjin Han;Huiyun Kim;Sooyoul Kwon;Young Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, enhanced in situ bioremediation using slow substrate release techniques has been actively researched for managing TCE-contaminated groundwater. This study conducted a lab-scale batch reactor experiment to evaluate the feasibility of natural attenuation for TCE dechlorination using microsized corn-oil droplet (MOD) as an activator considering the following three factors: 1) TCE dechlorination in the presence or absence of MOD; 2) TCE dechlorination in the presence or absence of inactivator of native microbial activity; and 3) MOD concentration effects on TCE dechlorination. Batch reactors were constructed using site groundwater and soil in which Dehalococcoides bacteria were present. Without MOD, TCE was decomposed into dichloroethylene (DCE). However, other by-products of TCE dechlorination were not detected. With MOD, DCE, vinyl chloride (VC), and ethylene (ETH) were sequentially observed. This result confirmed that MOD effectively supplied electrons to complete dechlorination of TCE to ETH. However, when an excess of MOD was provided, it formed unfavorable conditions for anaerobic digestion because dechlorination reaction did not proceed while propionic acid was accumulated after DCE was generated. Therefore, if an appropriate amount of MOD is supplied, MOD can be effectively used as a natural reduction activator to promote biodegradation in an aquifer contaminated by TCE.