• Title/Summary/Keyword: chloride environment

Search Result 762, Processing Time 0.025 seconds

Service Life Prediction and Cost Estimation of Repaired Concrete Structures Under Marine Environment (염해 환경 하 보수된 콘크리트 구조물의 사용수명 예측 및 보수 비용 평가)

  • Shim, Hyun Bo;Ann, Ki Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.226-234
    • /
    • 2011
  • The service life of concrete structures exposed to a marine environment can be extended by controlling the amount of chloride in cover concrete. Patching is one of the appropriate maintenance techniques for chloride contamination. Chloride-contaminated cover concrete is removed and replaced with sound one. It can provide less risk of corrosion of steel, so that the structure can be maintained for required service life. In this study, a quantitative assessment of the service life subjected to the chloride attack is proposed to determine the effective repair options such as repair depth, repair material and timing of repair. The Crank-Nicolson based finite difference formulation from Fick's second law is proposed to predict the profiles of chloride ion in a repaired concrete structure, considering ingress of chloride from outer and redistribution of residual chloride from the substrate concrete. Therefore, the repair application times and maintenance cost for the target service life can be estimated. Finally, the numerical examples are presented to ensure its applicability.

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

Characteristics of Nitrate Removal Using Micellar-enhanced Ultrafiltration (MEUF에 의한 질산성 질소 제거에 관한 연구)

  • 백기태;이현호;김보경;김호정;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • Feasibility of micellar-enhanced ultrafiltration far the removal of nitrate was investigated using cationic surfactants, cetylpyridinium chloride and octadecylamine acetate. The removal of nitrate increased as the molar ratio of surfactant increased. With the molar ratio of 3, at least 80% of nitrate was removed, while > 98% of nitrate was removed at the surfactant molar ratio of 10. Octadecylamine acetate showed higher removal efficiency of nitrate and higher rejection of surfactant than cetylpyridinium chloride because of the accessibility of nitrate to surfactant micelles due to head group of surfactant. Octadecylamine acetate turned out to be a better surfactant than cetylpyridinium chloride for micellar-enhanced ultrafiltration to remove nitrate from groundwater.

Prediction of Chloride Profile considering Binding of Chlorides in Cement Matrix

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki Yong
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2009
  • Chloride induced corrosion of steel reinforcement inside concrete is a major concern for concrete structures exposed to a marine environment. It is well known that transport of chloride ions in concrete occurs mainly through ionic/molecular diffusion, as a gradient of chloride concentration in the concrete pore solution is set. In the process of chloride transport, a portion of chlorides are bound in cement matrix then to be removed in the pore solution, and thus only the rest of chlorides which are not bound (i.e. free chlorides) leads the ingress of chlorides. However, since the measurement of free/bound chloride content is much susceptible to environmental conditions, chloride profiles expressed in total chlorides are evaluated to use in many studies In this study, the capacity of chloride binding in cement matrix was monitored for 150 days and then quantified using the Langmuir isotherm to determine the portions of free chlorides and bound chlorides at given total chlorides and the redistribution of free chlorides. Then, the diffusion of chloride ion in concrete was modeled by considering the binding capacity for the prediction of chloride profiles with the redistribution. The predicted chloride profiles were compared to those obtained from conventional model. It was found that the prediction of chloride profiles obtained by the model has shown slower diffusion than those by the conventional ones. This reflects that the prediction by total chloride may overestimate the ingress of chlorides by neglecting the redistribution of free chlorides caused by the binding capacity of cement matrix. From the evaluation, it is also shown that the service life prediction using the free chloride redistribution model needs different expression for the chloride threshold level which is expressed by the total chlorides in the conventional diffusion model.

Enhanced Classical Tafel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non-Linear Effect of Temperature

  • Hussain, Raja Rizwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.71-75
    • /
    • 2010
  • The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non-linear effect of temperature on corrosion of rebar embedded in concrete.

Durability Life Prediction of Concrete Subjected to Freezing-Thawing and Chloride Attack (동결융해와 염해에 따른 복합열화를 고려한 콘크리트의 내구수명 예측)

  • Hwang, Hyo-Jae;Park, Dong-Cheon;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.97-101
    • /
    • 2008
  • As the number of concrete building structures in marine environment increases, it is important to study and predict the durability and the compound deterioration of the concrete which is exposed in both chloride and freezing-thawing damage. The concrete's resistance against freezing and thawing is tested based on KS F 2456, while its chloride ion diffusion coefficient is evaluated based on NT BUILD 492. In result, the more exposure to freezing and thawing process, the shorter life it gets, due to the increased amount of chloride ion diffusion coefficient.

  • PDF

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

Research on chloride ion diffusivity of concrete subjected to CO2 environment

  • Zhang, Shiping;Zhao, Binghua
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.219-229
    • /
    • 2012
  • Carbonation is a widespread degradation of concrete and may be coupled with more severe degradations. An experimental investigation was carried out to study the effect of carbonation on chloride ion diffusion of concrete. The characteristic of concrete after carbonation was measured, such as carbonation depth, strength and pore structure. Results indicated that carbonation depth has a good linear relation with square root of carbonate time, and carbonation can improve compressive strength, but lower flexural strength. Results about pore structure of concrete before and after carbonation have shown that carbonation could cause a redistribution of the pore sizes and increase the proportion of small pores. It also can decrease porosities, most probable pore size and average pore diameters. Chloride ion diffusion of concrete after carbonation was studied through natural diffusion method and steady state migration testing method respectively. It is supposed that the chloride ion concentration of carbonation region is higher than that of the sound region because of the separation of fixed salts, and chloride ion diffusion coefficient was increased due to carbonation action evidently.

ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems

  • Minjeong Kim;Nakjun Choi;Eunna Choi;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.857-863
    • /
    • 2023
  • Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.