• Title/Summary/Keyword: chloride corrosion

Search Result 745, Processing Time 0.022 seconds

Estimation of Critical Chloride Threshold Value Using Corrosion Monitoring (부식 모니터링을 이용한 콘크리트 내의 임계 염화물량 평가)

  • Bae Su Ho;Lee Kwang Myong;Chung Young Soo;Kim Jee Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.801-804
    • /
    • 2004
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mixture proportions, cement type and constituents, presence of admixtures, environmental factors, steel reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and sea water-circulated method, respectively and during the test, corrosion monitoring by half cell potential method was carried out to estimate the critical chloride threshold value when corrosion for reinforcing steel in concrete was perceived. For this purpose, lollypop and beam test specimens were made for $31.4\%,\;41.5\%\;and\;49.7\%$ of w/c. respectively and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with water-cement ratio and the critical chloride threshold value was found to range from 0.91 to $1.27kg/m^3$.

  • PDF

Chloride Diffusion Coefficient and Steel Corrosion Properties of Concrete containing Hydrotalcite-based Corrosion Inhibitor (하이드로탈사이트계 방청제를 혼입한 콘크리트의 염화물확산계수 및 철근부식특성)

  • Kang, In-Young;Kim, Gyu-Yong;Yoon, Min-Ho;Hwang, Eui-Chul;Seo, Won-Woo;Son, Min-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.90-91
    • /
    • 2017
  • Concrete can be used semi-permanently unless the steel is corroded. However, the concrete exposed to the marine environment is exposed to sea breeze, so chloride ions penetrate into the concrete and the steel is corroded accordingly. In order to solve these problems, there is a method of increasing the covering depth of the concrete and an application of the epoxy paint to the steel. In this study, the hydrotalcite type corrosion inhibitor was mixed with the concrete and the compressive strength, chloride diffusion coefficient and the corrosion properties of the steel were examined.

  • PDF

An Experimental Study on Measurement of Corrosion Initiation in Reinforced Concrete Exposed to Chloride Using EIS Method (EIS를 이용한 염해에 노출된 철근콘크리트의 부식개시 측정에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.61-62
    • /
    • 2017
  • In this study, the initiation of steel corrosion was monitored due to chloride attack using embedded sensor. In general, Steel bars embedded in concrete are protected from corrosion by being forming a passive film on the surface. However, the passive film is destroyed by chemical erosion such as concrete carbonation and chloride penetration, and the rebar is exposed to the deteriorating factor and corrosion proceeds. In order to realize the initiation of steel corrosion, OCP and change of Impedance parameter were observed by using Half-cell and EIS method depending on cover depth. As result, 10mm cover showed the impedence increased in 6weeks.

  • PDF

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor (제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구)

  • Tran, Duc Thanh;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

The Effect of Temperature on the Corrosion of Mild Steel in H3PO4 Containing Halides and Sulfate Ions

  • Chandrasekaran, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The corrosion behaviour of mild steel in phosphoric acid solution in the presence and absence of pollutants viz. Chloride, Fluoride and Sulfate ions at 302K-333K was studied using mass loss and potentiostatic polarization methods. The addition of chloride and sulfate ions inhibits the mild steel corrosion in phosphoric acid while fluoride ions stimulate it. The effect of temperature on the corrosion behaviour of mild steel indicated that inhibition of chloride and sulfate ions decreased with increasing temperature. The adsorption of these ions (Chloride and sulfate) on the mild steel surface in acid has been found to obey Langmuir adsorption isotherm. The values of activation energy (Ea) and free energy of adsorption ($\Delta$) indicated physical adsorption of these ions (chloride and sulfate) on the mild steel surface. The plot of $logW_{f}$ against time (days) at 302K gives a straight line, which suggested that it obeys first order kinetics and also calculate the rate constant k and half-life time $t_{1/2}$.

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.

A Study on the Development of Steel Corrosion Prediction System (철근 부식 예측 시스템의 개발에 관한 연구)

  • 김도겸;박승범;이택우;이종석;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.743-746
    • /
    • 1999
  • One of the main deteriorating factors that affect the service life of concrete structures is the corrosion of reinforcement. The chlorides penetrate the concrete, destroy the passive layer surrounding the steel, and help initiate the steel corrosion. A Corrosion Prediction System(CPS) has been developed to assist the engineer in analyzing the service life of existing sea-shore structures and future concrete repairs by calculate the chloride diffusion in concrete. The CPS calculates mixing design, physical properties or recent chloride profiles. The CPS can be used to evaluate changes in concrete cover, chloride loads, and environmental conditions in different structural designs.

  • PDF