• 제목/요약/키워드: chitosan solution

검색결과 322건 처리시간 0.024초

키토산과 알긴을 이용한 블랜드필름의 제조와 분해 (Degradation and Preparation of Blend Films Using Natural Polymers Chitosan and Algin)

  • 류정욱;이홍열;오세영
    • 한국식품영양과학회지
    • /
    • 제28권2호
    • /
    • pp.417-422
    • /
    • 1999
  • Algin and chitosan are known as biodegradable natural polymers. PVA is useful for the production of water soluble packaging, paper, textile sizes. PVA/Algin and PVA/chitosan films were prepared by solution blends method in the weight ratio of chitosan, algin for the purpose of useful biodegradable films. Thermal and mechanical properties of blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan films were similar to PVA at thermal and mechanical properties. PVA/Algin films were found that phase separation was occured as more than 25wt% increasing the blend ratio of algin. PVA/Algin films were observed to be less partially compatibility than 10wt% increasing the blend ratio of algin by DSC, mechanical properties and SEM. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, they were rapidly degraded in the enzyme( glucosidase) solution better than pH solution by enzymolysis.

  • PDF

고온.고압 처리한 키토산을 이용한 수중의 납 제거에 관한 연구 (A study on lead removal in aqueous solution using autoclaved chitosan)

  • 김동석;이승원;우형택
    • 한국환경과학회지
    • /
    • 제12권12호
    • /
    • pp.1269-1276
    • /
    • 2003
  • In order to know the effect of atuoclaving on the heavy metal removal using chitosan, lead removal capacities and removal rates by various chitosans in aqueous solution were compared according to the various autoclaving time. The lead removal efficiencies and removal rates by the autoclaved chitosan were found to be on the order of 15 min(98%) > 10 min(95%) > 30 min(83%) > 5 min(53%) > 60 min(47%) > 0 min(22%) chitosan. The molecular weight of chitosan was decreased by the increase of autoclaving time. Therefore, the heavy metal removal capacity was not well correlated to the molecular weight. Langmuir isotherm was well fitted to experimental results of equilibrium adsorption on chitosan. In order to examine the process of lead removal by the autoclaved chitosan, TEMs, SEMs and FT-IR analyses were used. The surface of autoclaved chitosan was much more porous and the lead removal was mainly occurred on the surface of chitosan. The structure of autoclaved chitosan was same as that of controlled chitosan.

키토산을 이용한 기능성 소재 개발 1. 키토산 섬유와 S-카르복시메틸케라틴 코팅 키토산 섬유의 제조와 특성 (Development of Functional Textile Material by Using Chitosan 1. Preparation and Characterization of Chitosan Fiber and Chitosan Fiber Coated with S-carboxymethyl Keratein)

  • 민경혜;신윤숙
    • 한국염색가공학회지
    • /
    • 제11권3호
    • /
    • pp.32-40
    • /
    • 1999
  • Chitosan fiber was prepared by wet spinning with various draw ratio. Chitosan fiber was coated with f-carboxymethyl keratein(SCMK) by extruding chitosan solution into 1 M NaOH solution containing 1% SCMK. Among three chitosan used in this study(chitosans of 5 cps, 50 cps, 100 cps), 50 cps chitosan gave the best tenacity and optimum concentration was 5%. SCMK coating increased the tenacity of chitosan fiber. Regardless of SCMK coating, tenacity and elongation of both chitosan fibers were increased with the increase of draw ratio. Chitosan fiber showed antimicrobial activity against Staphyloccus aureus showing 66∼72% of bacteria reduction rates. On the other hand, chitosan fiber coated with SCMK didn't show any antimicrobial activity.

  • PDF

키토산 가교 처리된 면직물의 태 변화에 관한 연구(II) - 키토산 농도 및 분자량의 영향 - (A Study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics(II) - Effect of Concentration and Molecular Weight of Chitosan -)

  • 김민지;이신희
    • 한국의류산업학회지
    • /
    • 제7권4호
    • /
    • pp.439-444
    • /
    • 2005
  • This article describes the change in the hand value of chitosan-crosslinked cotton fabrics. The chitosan-crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH), 2% aqueous acetic acid and 20% aqueous sodium hydroxide. It proposed that the crosslinking and mercerizing were performed with the mixture of four different molecular weight chitosan and ECH in a single step. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle roller, pre-dried at $130^{\circ}C$, mercerized and crosslinked in NaOH solution and finally washed and dried. Mechanical and physical properties of the chitosan crosslinked fabric were measured on concentration and molecular weight by Kawabata Evaluation System(KES) and other instruments. As the concentration of chitosan solution increased, LT, WT, B, 2HB were increased. WT, B, 2HB, MIU, SMD, $T_0$, $T_m$ were decreased when chitosan was depolymerized. On the other hand, RT was increased when chitosan was depolymerized.

금속이온흡착 특성에 미치는 키토산 섬유 굵기의 영향 (Effects of Fineness of Chitosan Fiber on the Adsorption Characteristics of Metal Ion)

  • 최해욱;정영진;이명환;이순장;박수영;이신희
    • 한국염색가공학회지
    • /
    • 제15권3호
    • /
    • pp.146-153
    • /
    • 2003
  • This article describes the metal ions adsorption of chitosan fibers. The chitosan fibers were manufactured by wet spinning using 2% acetic acid as solvent, 10% aqueous sodium hydroxide as non solvent, and 4%chitosan solution as a solvent. The adsorption characteristics of chitosan fibers towards 100ppm solutions of various metal ions such as Cu(II), Cd(II), Cr(III), Hg(II) were examined at different pH value by ICP-Atomic Emission Spectrometer. The adhesiveness of metallic ions to the chitosan fiber were increased with the increase of pH and the decrease of denier. On the other hand, from pH4, chitosan fiber that is immersed in metal ion aqueous solution of Cu(II) and Cd(II) became homogeneous solution because is dissolved. The adhesiveness of metallic ions to chitosan fiber were found to increased in a sequence of Hg(II)> Cr(III)> Cu(II)> Cd(II). The antimicrobial characteristics of the chitosan fiber by adhered metal ions, virgin chitosan fiber, and cotton fiber were evaluated. The antimicrobial activity of the fibers were increased with the decrease of denier.

다층 코팅 처리에 의한 기능성 섬유의 제조 - 키토산과 알지네이트로 피복된 면 - (Preparation of Functional Textiles by Multilayer Structure - Cotton Fabrics Treated with Chitosan and Alginate Skin -)

  • 손태원;이주현;이민경;조진원
    • 한국염색가공학회지
    • /
    • 제23권3호
    • /
    • pp.201-209
    • /
    • 2011
  • With a new method of applying chitosan and alginate onto cellulose, multi-coated cotton fabrics with chitosan and alginate were prepared and characterized. To coat cotton with chitosan, raw cotton was dipped in chitosan solution, mangled of 1kgf/$cm^2$, neutralized in 2 wt% NaOH soluton, washed, and dried at $60^{\circ}C$ oven. The chitosan-coated fiber was dipped in sodium alginate solution, 1kgf/$cm^2$ mangled, neutralized in 2 wt% $CaCl_2$ solution, washed, and dried at $60^{\circ}C$ oven, resulting in CCAC(coated cotton with chitosan and calcium alginate skin) fiber characteristics. Excellent absorbancy of distilled water and saline solution was observed by the absorption test on cotton fabric treated with CCAC(0.5 wt% calcium alginate) and 0.5 wt% calcium alginate respectively. The SEM photograph confirmed the uniform coating on the cotton fabric surface.

키토산 가공 솜의 향균성능의 평가 (Evaluation of Antibacterial Activities of Chitosan Treated Fiber Waddings)

  • 유혜자;이혜자
    • 한국의류산업학회지
    • /
    • 제3권3호
    • /
    • pp.277-282
    • /
    • 2001
  • The effect of chitosan on antibacterial activities of cotton, wool and polyester fibers was investigated by shake flask method. Chitosan was treated in 0.1%, 1% and 2% $NaBO_3$ solution to reduce the molecular weight in 4 steps, wadding of cotton, wool and polyester were treated in 0.1%, 0.3% and 0.5% of chitosan solution which were dissolved in 2% acetic acid aqueous solution. The antibacterial activities of the fiber wadding treated and untreated by chitosan against Escherichia coli, Proteus vulgaris and Stephylococcus aureus were measured by shake flask method. On the untreated waddings, cotton showed better antibacterial activities than wool, but on the treated ones, wool showed better than cotton. The antibacterial activity of polyester was better than that of cotton or wool which preserved before and after the chitosan treatment against the three kinds of bacteria. When the chitosan treated cotton waddings was retreated in NaOH aqueous solution, their bacterial activities decreased. After laundering, the antibacterial activities of the treated cotton and wool waddings kept good, but that of the treated polyester reduced by almost half.

  • PDF

Method for Rapid and Accurate Measurement of Chitosan Viscosity

  • No, Hong -Kyoon;Samuel P. Meyers
    • Preventive Nutrition and Food Science
    • /
    • 제4권2호
    • /
    • pp.85-87
    • /
    • 1999
  • A simple and rapid method to estimate the viscosity of chitosan using laboratory pipettes was developed. The voscosities of nine different chitosan samples, prepared ini 1 % acetic acid at a 1% concentration , were measured with a standard viscometer. Prior to measurement of flow time of 1% chitosan solution with a pipette, twelve pipettes were assorted into three groups with flow times of 4, 5 and 6 sec after measuring passage of 9 ml of 1% acetic acid througth a 10 ml pipette. With each group of pipettes. flow time of 1% chitosan solution was determined by measuring the delivery time of 5 ml of the 10ml solution through a 10 ml pipette. Results of regression analyses revealed high linear relationship(R2=0.9812, 0.9663, and 0.9754) between viscosities calculated with a viscometer and flow times measured with 4, 5 or 6 sec group pipettes. The viscosity of chitosan could be readily and accurately estimated from these linear regression equation by measuring flow times based on pipette delivery.

  • PDF

Chitosan을 이용한 Silymarin의 방출 제어 (Controlled Release of Silymarin from Chitosan Carrier)

  • 호병균;박경옥;강진양;서성훈
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권1호
    • /
    • pp.37-46
    • /
    • 1995
  • The experiment was designed to investigate the sustained release dosage form of silymarin (SL) from chitosan (CS) carrier. Solid dispersed system was prepared by mixing the drug with chitosan. This solid dispersed system was cross-linked by glutaraldehyde, formaldehyde, acetaldehyde and butylaldehyde, respectively. The dissolution rates of these preparations were compared with each other in vitro. The silymarin was mired with anionic alginate gel and bead was prepared by dropping this mixture to cationic chitosan solution including calcium chloride. Chitosan encapsulated alginate bead after drying in the oven was investigated for the dissolution rate. The dissolution rate of SL-CS mixture was delayed with increase in the amounts of CS and the concentration of aldehyde. The effect on the delay of dissolution rate was in the increasing order of formaldehyde, glutaraldehyde, acetaldehyde, butylaldehyde. The dissolution rate of chitosan encapsulated alginate bead was parallel with the concentration of chitosan in diluted hydrochloric acid solution and delayed with increase in the concentration of chitosan in phosphate buffer solution.

  • PDF

Shake Flask Method와 개량 Shake Flask Method에 의한 키토산의 MRSA 향균성 평가 (A Study on the Antibacterial Activity of Chitosan on the MRSA by the Shake Flask Method and Modified Shake Flask Method)

  • 최정임;전동원
    • 한국의류산업학회지
    • /
    • 제5권1호
    • /
    • pp.64-70
    • /
    • 2003
  • Water-insoluble chitosan with molecular weight of 2,000,000, 580,000, 80,000, and 40,000 and more than 90% of degree of deacetylation were prepared to test antibacterial activity of chitosan against a pathogenic bacteria, methicillin resistant Staphylococcus aureus (MRSA). As experimental method, the Shake Flask Method (SFM) and Modified Shake Flask Method (MSFM) were applicated. The anti-microbial activity of chitosan/acetic acid aqueous solution is consistent irrespective of Mw of chitosan. MIC value of SFM measurement was 0.2 ppm, and MIC value of modified SFM measurement was 25 ppm. But MIC value of chitosan/acetic add solution and chitosan treated cotton filter paper was equally 5 ppm. The antibacterial activities of chitosan were different in different test measurements employed. The antibacterial activities of chitosan/acetic acid solution and chitosan treated cotton filter paper were also different. Therefore, it needs to be pointed out that the test measurements of anti-microbial activity have some problems.