• Title/Summary/Keyword: chitosan membrane

Search Result 135, Processing Time 0.017 seconds

Guided bone regenerative effect of chitosan and chitosan-cellulose membranes (Chitosan과 chitosan-cellulose를 이용한 차폐막의 골조직 재생유도능력에 관한 연구)

  • Kye, Seung-Beom;Son, Seong-Heui;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.611-632
    • /
    • 1998
  • Chitosan has been known as a wound healing agent. The purpose of this study was to evaluate the biocompatibility and guided bone regenerative effect of chitosan and chitosan-cellulose membranes. The effects of chitosan and chitosan-cellulose membranes on the growth and survival of human periodontal ligament cells were examined by rapid colorimetric MTT(tetrazolium) assay, and the tissue response and resorption pattern were observed by implanting the membranes into the subcutaneous tissue of the back of rats for 6 weeks. To evaluate the guided bone regenerative potential of membranes, the amount of newly formed bone in the rat calvarial defects(8mm in diameter) was measured by histomorphometry and radiomorphometry 1,2 and 4 weeks after implantation of membranes. Chitosan and chitosan-cellulose membranes showed no adverse effect on the growth and survival of human periodontal ligament cells. When membranes were subcutaneously implanted, inflammatory reaction was observed at 1 week and which gradually subsided 2weeks after implantation. Membranes remained intact throughout the experimental period of 6 weeks. Radiomorphometric analysis of the craniotomy sites revealed that chitosan and chitosan-cellulose membrane implanted sites showed increased radiopacity over control. Statistically significant differences with control were found in chitosan-cellulose membrane implanted group at 2 and 4 weeks, and chitosan membrane implanted group at 4 weeks(P<0.05). Histomorphometric data indicated a pattern of osseous healing similar to radiomorphometric analysis. There was a statistically significant difference between control and chitosan-cellulose membrane implanted group at 4 weeks(P<0.05). These results implicate that chitosan and chitosan-cellulose membrane might be useful for guided bone regeneration.

  • PDF

Preparation and Characterization of Chitosan Membranes Cross-linked Using Poly(2,6-dimethyl-1,4-phenylene oxide) Polymer and Chitosan (Poly(2,6-dimethyl-1,4-phenylene oxide) 고분자와 키토산을 이용한 가교막 제조 및 특성평가)

  • Son, Tae Yang;Ko, Tae Ho;Jung, Ji Hye;Hong, Jun Ui;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • In this study, cross-linked membrane were successfully prepared by using brominated PPO (Br-PPO) as the main polymer chain. Chitosan and quaternary ammonium modified chitosan (QA-chitosan) was used as the cross linking agents. The cross linked membranes were post-functionalized by using trimethylamine solution. The degree of cross linking was also controlled by varying the ratio of cross linking agent. The applicability of the cross-linked membrane (A-PPO + chitosan, A-PPO + QA-chitosan) as ion exchange membranes was verified through various characterization techniques. The cross-linked membrane using QA-chitosan as cross linking agent was found to be better in performance than the membrane using pristine chitosan cross linking agent. As the percentage of QA-chitosan increased, the ion exchange capacity from 1.18 meq/g to 1.53 meq/g and water uptake from 21.6% to 42.2% was improved.

Development of Artificial Skin from Chitosan Derivatives

  • Yong-Don Won;Chang-Kook Lee;Beung-Ho Ryu
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 1999
  • Chitosan derivitives, a sulfated N-acetylchitosan was synthesized, and artificial skin of sulfated N-acetylchitosan and N-carboxyl butyl chitosan were investigated. Sulfated derivatives of chitosan were analyzed by {TEX}${13}^C${/TEX}-NMR and the structure on N-acetyl chitosan 3,6-O-disulfate were confirmed. Rabbits underwent a midline laparotomy followed either by a bilateral peritoneal sidewall abraison(3.0×1.5cm). The injured surface was then covered with 0.2mm thick sulfated N-acetyl chitosan membrane. Sulfated N-acetyl chitosan membrane was found to reduce postsurgical bleeding after abraison of peritoneal surface treated with sulfated N-acetyl chitosan membrane. Sulfated N-acetyl chitosan implanted rabbit showed quick wound healing than N-carboxybutyl chitosan. With a sterilization procedure of chemical sterilization, sulfated N-acetyl chitosan seem to be better substitutes than N-carboxybutyl chitosan.

  • PDF

Transport of Metal Ions Through the Crosslinked Chitosan Membrane (가교 Chitosan막에 의한 금속 이온의 투과 특성)

  • Kim, Chong-Bae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.416-422
    • /
    • 1993
  • In order to prepare high performance polymeric membrane, the crosslinked chitosan(C. Chitosan)membrane was prepared, the transport and the selective separation of the metal ions through the membrane were investigated. It was observed that the transport rates of the metal ions through the membrane increased according to the decreasing of the initial pH in downstream solution. Proton pump mechanism for this transport phenomenon was suggested. The transport selectivity is dependent on the selective adsorption resulting from the complex formation of chitosan with each metal ion. The separatin factor(${\alpha}_{Cu}{^{2+}}$) for the membrane was 9.5.

  • PDF

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application

  • Purwanto, Mochammad;Widiastuti, Nurul;Gunawan, Adrian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.375-381
    • /
    • 2021
  • Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.

Enantioselective Membranes Based on Chitosan for The Separation of D- And L-Tryptophan

  • Jonggeon Jegal;Kim, Jang-Hoon;Kim, Jee-Hye;Lee, Kew-Ho;Lee, Yongtaek
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • Chitosan membranes crosslinked with glutaraldehayde that contained chiral environment were prepared. The chitosan membranes were characterized using FTIR and swelling index measurements. Their swelling index in water ranged from 100 to 70%, depending on the crosslinking time. The separation of D- and L-isomers of tryptophan was achieved through a pressure driven membrane separation process, using the self-supporting crosslinked chitosan membranes. The chiral separation performance of the membranes depended strongly on the swelling index of the membranes and the separation conditions such as concentration of feed solutions and different operating pressures. Especially when a chitosan membrane with a swelling index of 70% was used, almost complete optical resolution of D- and L-tryptophan was obtained ; enantiomeric excess (ee %) of 97.92% and flux of 2.26 g/㎡$.$h.

Fabrication of Cross-linked Nano-Fibrous Chitosan Membranes and Their Biocompatibility Evaluation

  • Nguyen, Thi-Hiep;Lee, Seong-Jin;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes (PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구)

  • Ha, Jung Im;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.418-424
    • /
    • 2013
  • The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

Gas Permeation Characteristics through Chitosan-HNT Composite Membrane (Chitosan-HNT 복합막을 이용한 기체 투과특성에 관한 연구)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.358-366
    • /
    • 2014
  • Chitosan-HNT (halloysite nanotube) composite membranes were prepared by the addition of HNT 0, 3, 5, and 10 wt%. The structure of composite membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $30^{\circ}C$ and $4kgf/cm^2$. Gas permeability and selectivity were investigated by increasing the amount of HNT contents in the chitosan. Chitosan-HNT composite membrane for $CO_2$ and $CH_4$ showed the maximum value at 3 wt% of HNT content and decreased thereafter. The selectivity of ($CO_2/CH_4$) was increased due to its affinity with the OH groups on the HNT, was shown in the range of 1.3 to 3.8 at 0~10 wt%.