• 제목/요약/키워드: chip-in-substrate

검색결과 323건 처리시간 0.028초

High Performance RF Passive Integration on a Si Smart Substrate for Wireless Applications

  • Kim, Dong-Wook;Jeong, In-Ho;Lee, Jung-Soo;Kwon, Young-Se
    • ETRI Journal
    • /
    • 제25권2호
    • /
    • pp.65-72
    • /
    • 2003
  • To achieve cost and size reductions, we developed a low cost manufacturing technology for RF substrates and a high performance passive process technology for RF integrated passive devices (IPDs). The fabricated substrate is a conventional 6" Si wafer with a 25${\mu}m$ thick $SiO_2$ surface. This substrate showed a very good insertion loss of 0.03 dB/mm at 4 GHz, including the conductive metal loss, with a 50 ${\Omega}$ coplanar transmission line (W=50${\mu}m$, G=20${\mu}m$). Using benzo cyclo butene (BCB) interlayers and a 10 ${\mu}m$ Cu plating process, we made high Q rectangular and circular spiral inductors on Si that had record maximum quality factors of more than 100. The fabricated inductor library showed a maximum quality factor range of 30-120, depending on geometrical parameters and inductance values of 0.35-35 nH. We also fabricated small RF IPDs on a thick oxide Si substrate for use in handheld phone applications, such as antenna switch modules or front end modules, and high-speed wireless LAN applications. The chip sizes of the wafer-level-packaged RF IPDs and wire-bondable RF IPDs were 1.0-1.5$mm^2$ and 0.8-1.0$mm^2$, respectively. They showed very good insertion loss and RF performances. These substrate and passive process technologies will be widely utilized in hand-held RF modules and systems requiring low cost solutions and strict volumetric efficiencies.

  • PDF

Mycelial growth of Lentinula edodes in response to different mixing time, pressure intensity, and substrate porosity

  • Chang, Hyun You;Seo, Geum Hui;Lee, Yong Kuk;Jeon, Sung Woo
    • 한국버섯학회지
    • /
    • 제15권4호
    • /
    • pp.164-167
    • /
    • 2017
  • Biological efficiency (BE), the ratio of fresh mushrooms harvested per dry substrate weight, expressed as the percentage of Lentinula edodes, also known as shiitake, was determined using the 'Sanjo 701' strain stored in the Department of Mushroom at the Korea National College of Agriculture and Fisheries. The mycelia were grown in glass columns with varying levels of moisture content and varying mixing periods of 0.5, 1, 2, and 3 hours. The substrate was sterilized using a steam pressure autoclave sterilizer at normal and high pressure to avoid contamination. The results showed that mycelial growth (126 mm/15 days) was optimized at 55% moisture content. The best mycelial growth of 117 mm/15 days was obtained with 2 hours of mixing time. Normal pressure sterilization yielded better results with mycelial growth of 96 mm/15 days at $100^{\circ}C$ compared to 88 mm /15 days with sterilization at $121^{\circ}C$. Mycelial density was higher, i.e. 3(+++), with normal pressure sterilization compared to 2(++) with high pressure sterilization. Furthermore, sawdust mixed with 5% woodchips increased the substrate porosity and yielded higher mycelial growth. Thus, we demonstrated that the optimum harvest or potential increased yield of shiitake can be obtained by modulating moisture content, mixing time, and substrate porosity.

PCB내 1005 수동소자 내장을 이용한 Diplexer 구현 및 특성 평가 (The Fabrication and Characterization of Diplexer Substrate with buried 1005 Passive Component Chip in PCB)

  • 박세훈;윤제현;유찬세;김필상;강남기;박종철;이우성
    • 마이크로전자및패키징학회지
    • /
    • 제14권2호
    • /
    • pp.41-47
    • /
    • 2007
  • 현재 PCB기판내에 소재나 칩부품을 이용하여 커패시터나 저항을 구현하여 내장시키는 임베디드 패시브기술에 대한 연구가 많이 진행되어 지고 있다. 본 연구에서는 커패시터 용량이나 인덕터의 특성이 검증된 칩부품을 기판내 내장시켜 다이플렉서 기판을 제작하였다. $880\;MHz{\sim}960\;MHz(GSM)$영역과 $1.71\;GHz{\sim}1.88\;GHz(DCS)$영역을 나누는 회로를 구성하기 위해 1005크기의 6개 칩을 표면실장 공정과 함몰공정으로 형성시켜 Network Analyzer로 측정하여 비교하였다. chip표면실장으로 구현된 Diplexer는 GSM에서 최대 0.86 dB의 loss, DCS에서 최대 0.68 dB의 loss가 나타났다. 표면실장과 비교하였을 때 함몰공정의 Diplexer는 GSM 대역에서 약 5 dB의 추가 loss가 나타났으며 목표대역에서 0.6 GHz정도 내려갔다. 칩 전극과 기판의 도금 연결부위는 $260^{\circ}C$, 80분의 고온공정 및 $280^{\circ}C$, 10초의 솔더딥핑의 열충격 고온공정에서도 이상이 없었으며 특성의 변화도 거의 관찰되지 않았다.

  • PDF

Quantitative and Rapid Analysis of Transglutaminase Activity Using Protein Arrays in Mammalian Cells

  • Kwon, Mi-Hye;Jung, Jae-Wan;Jung, Se-Hui;Park, Jin-Young;Kim, Young-Myeong;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.337-343
    • /
    • 2009
  • We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutaminase activity in mammalian cells. Transglutaminases are a family of $Ca^{2+}$-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N'-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the $[^3H]putrescine$-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transglutaminase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases.

Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석 (Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD)

  • 김선운;김제원
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향 (Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding)

  • 최원정;유세훈;이효수;김목순;김준기
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

COG(Chip On Glass)를 위한 ACA (Anisotropic Conductive Adhesives) 공정 조건에 관한 연구 (A Study on the Process Conditions of ACA( Anisotropic Conductance Adhesives) for COG ( Chip On Glass))

  • 한정인
    • 한국재료학회지
    • /
    • 제5권8호
    • /
    • pp.929-935
    • /
    • 1995
  • 구동 IC를 유리기판 위의 Al패드 전극에 연결하는 LCD(Liquid Crystal Display) 모듈을 실장하는 Chip On Glass (COG) 기술을 개발하기 위하여 기존에 잘 알려진 기술 가운데 실제로 적용 가능성이 가장 유망한 이방성 도전 접착제 (ACA, Anisotropic Conductive Adhesives)를 사용한 공정에 대하여 조사하였다. ACA 공정은 본딩 부분에 ACA 수지를 균일하게 분포시키는 공정과 자외선을 조사하여 수지를 경화하여 칩을 실장하는 공정의 2단계로 진행하였다. 칩에 가해준 하중은 2-15kg이었고 칩의 예열 온도는 12$0^{\circ}C$이었다. 이방성 도전체는 Au 또는 Ni이 표면 피막 재료로 사용된 것을 사웅하였으며 전도성 입자의 갯수가 500, 1000, 2000, 4000개/$\textrm{mm}^2$이며 크기가 5, 7, 12$\mu\textrm{m}$이었다. ACA 처리의 결과 입자 크기가 5$\mu\textrm{m}$이고 입자 밀도는 4000개/$\textrm{mm}^2$일 경우가 대단히 낮은 접촉 저항 및 가장 안정된 본딩 특성을 나타냈었다.

  • PDF

시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩 (PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection)

  • 조철호;조웅;황승용;안유민
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1261-1268
    • /
    • 2006
  • This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.