• Title/Summary/Keyword: chemokine genes

Search Result 60, Processing Time 0.028 seconds

The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

  • Suzuki, Y.;Hong, Y.H.;Song, S.H.;Ardiyanti, A.;Kato, D.;So, K.H.;Katoh, K.;Roh, Sang-Gun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1316-1321
    • /
    • 2012
  • Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), adiponectin, leptin, and chemerin (peptide analog). The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-${\gamma}2$ (PPAR-${\gamma}2$) gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12), the treatment of TNF-${\alpha}$ and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.

Functions of Monocyte Chemotactic Protein-3 in Transgenic Mice Fed a High-Fat, High-Cholesterol Diet

  • An, So Jung;Jung, Un Ju;Choi, Myung-Sook;Chae, Chan Kyu;Oh, Goo Taek;Park, Yong Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.405-413
    • /
    • 2013
  • Monocyte chemotactic protein-3 (MCP-3), a chemokine that is in a superfamily of structurally related small chemotactic cytokines involved in leukocyte trafficking, is regarded as a key factor in atherogenesis. In this study, we examined the changes in atherogenic parameters including hepatic lipid accumulation and oxidative balance in MCP- 3-overexpressing transgenic mice (MCP-3 mice) under atherogenic conditions. To induce an extreme atherogenic condition, mice were fed a high-fat, high-cholesterol (HFHC) diet for 12 weeks. The body weight and food intake were not changed by MCP-3 overexpression in the aorta. On a HFHC diet, the MCP-3 mice had higher plasma levels of total cholesterol and a higher atherogenic index compared with wild-type mice, although there were no differences in the plasma HDL-cholesterol and triglyceride levels. Furthermore, an increase in lipid accumulation was observed in the aortas as well as the livers of the HFHC diet-fed MCP-3 mice compared with wild-type mice. The activities of antioxidant enzymes increased in the livers of the HFHC diet-fed MCP-3 mice, whereas supplementation with antioxidants, naringin and hesperidin, reversed the activities of the hepatic antioxidant enzymes in HFHC diet-fed MCP-3 mice, indicating that there might be more oxidative damage to the tissues in the HFHC diet-fed MCP-3 mice leading to progression towards atherosclerosis and hepatic steatosis. Microarray analyses of the aorta revealed atherosclerosis-, PPARs-, lipoprotein receptor, and apolipoprotein-related genes that were affected by the HFHC diet in MCP-3 mice. These findings suggest that aortic MCP-3 overexpression may contribute to the development of atherosclerosis and hepatic steatosis under atherogenic conditions.

Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.3
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor $(TGF)-{\beta}1$, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods: Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results: Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion: Losartan treatment reduced expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.

Systemic Analysis of Antibacterial and Pharmacological Functions of Scutellariae Radix (시스템 약리학적 분석에 의한 황금의 항균효과)

  • Kim, Hyo Jin;Bak, Se Rim;Ha, Hee Jung;Kim, Youn Sook;Lee, Boo Kyun;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • This study was performed to find antibacterial substances contained in Scutellariae Radix (SR) using a systems pharmacological analysis method and to establish an effective strategy for the prevention and treatment of infectious diseases. Analysis of the main active ingredients of SR was performed using Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. 36 active compounds were screened by the parameter values of Drug-Likeness (DL), Oral Bioavailability (OB), and Caco-2 permeability (Caco-2), which were based on the drug absorption, distribution, metabolism, and excretion indicators. The UniProt database was used to obtain information on 159 genes associated with active compounds. The main active compounds with antibacterial effects were wogonin, β-sitosterol, baicalein, acacetin and oroxylin-A. Target proteins associated with the antibacterial action were chemokine ligand 2, interleukin-6, tumor necrosis factor, caspase-8,9 and mitogen-activated protein kinase 14. In the future, systems pharmacological analysis of traditional medicine will be able to make it easy to find the important mechanism of action of active substances present in natural medicines and to optimize the efficacy of medicinal effects for combinations of major ingredients to help treat certain diseases.

cDNA microarray analysis of viral hemorrhagic septicemia infected olive flounder, Paralichthys olivaceus: immune gene expression at different water temperature (바이러스성 출혈성 패혈증에 감염된 넙치의 cDNA microarray 분석 : 수온에 따른 면역 유전자 발현의 차이)

  • Kim, Jin-Ung;Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The olive flounder, Paralichthys olivaceus is susceptible to viral hemorrhagic septicaemia virus (VHSV) at $15^{\circ}C$ but no mortality at $20^{\circ}C$ even though the virus can grow well in vitro at $20^{\circ}C$. Thus, we designed an experiment to know immune response of olive flounder against VHSV when the host reared at $15^{\circ}C$ or $20^{\circ}C$. cDNA microarray analysis was performed to compare the gene expression patterns of the kidney cells between the host reared at $15^{\circ}C$ or $20^{\circ}C$. The expression of MHC class I, IL-8, myeloperoxidae and endonuclease G-like having function for the antigen presentation and chemokine-factor were up-regulted both the $15^{\circ}C$ and $20^{\circ}C$ during VHSV infection. MHC class II gene existing on antigen-presenting cells and B cell lymphocytes, immunoglobulin (Ig) genes and phagocytosis related genes were down-regulated at $15^{\circ}C$ but highly expressed at $20^{\circ}C$. It can be thought that innate immune related antigen presentation by MHC class I and phagocytosis reaction against VHSV are efficiently occur both the temperature but macrophage or B cell related antigen presentation via MHC class II fails to induce downstream immune reactions (adaptive immunity) to make antibody, and it can be one of the reason that causes high mortality only at $15^{\circ}C$.

Effect of Baekryunchihyo-tang(白蓮治哮湯) on Expression of Chemokines in Human Mast Cell Line (HMC-I) (사람 Mast cell에서의 케모카인에 대한 백연치효탕(白蓮治哮湯)의 효과(效果))

  • Jung, Hee-Jae;Rhee, Hyung-Koo;Jung, Sung-Ki;Lee, Hyung-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.289-299
    • /
    • 2004
  • Background : Although the pathophysiology of asthma has been reported, its mechanism has not been fully elucidated. The mast cell is an effector cells in allergic inflammation and secretes a number of chemokines. Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. Chemokines also contribute to the pathogenesis of several disorders such as asthma, chronic bronchitis, atopic dermatitis, allergic rhinitis, and rheumatoid arthritis. Objective : In this study, the aim was to identify the effect of Baekryunchihyo-tang(白蓮治哮湯) on expression of chemokines. This was examined by RT-PCR using the human mast cell line (HMC-l) Materials and Methods : HMC-l cells were used, which is known to secrete and express chemokines. In order to investigate the protective effect of Baekryunchihyo-tang(白蓮治哮湯), HMC-l cells were incubated with pretreatment of Baekryunchihyo-tang(白蓮治哮湯) for 24 hrs. RT-PCR analyses of chemokine genes of cells pretreated with Baekryunchihyo-tang(白蓮治哮湯) showed that expressions of IL-8, $MIP-l{\beta}$, and RANTES genes in these cells were lower and $MIP-l{\alpha}$ showed a similar pattern compared to the calcium ionophore-treated group. In addition, cell cytotoxicity concentration measurements were performed by MTT assay method. Results : After stimulation with 1 uM calcium ionophore A23178 for 2 hrs, IL-8, major one of CXC chemokines, was highly expressed, and expression of $MIP-l{\beta}$ and RANTES (CC chemokines) increased, while expression of $MIP-l{\alpha}$ did not change. The cell cytotoxicity of Baekryunchihyo-tang(白蓮治哮湯) with treatments at various concentrations and times was not observed, respectively. Conclusion : This study suggests that Baekryunchihyo-tang(白蓮治哮湯) has dose-dependent effects on mRNA expression of IL-8(CXC chemokines), $MIP-l{\beta}$ and RANTES(CC chemokines) in human mast cellline(HMC-l). So these herbal medicines may inhibit the inflammatory process of asthma. Advanced studies are required to investigate the mechanism of inhibition by herbal medicine in the asthma model. This study provides basic data on the possibility of the clinical treatment of Baekryunchihyo-tang(白蓮治哮湯) for allergic disorders.

  • PDF

Supplementation of Indigenous Green Microalga (Parachlorella sp.) to Pre-starter Diet for Broiler Chickens (초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화)

  • An, Su Hyun;Joo, Sang Seok;Lee, Hyo Gun;Kim, Z-Hun;Lee, Chang Soo;Kim, Myunghoo;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • The present study determined the effect of dietary cultivated microalgae (Parachlorella sp.) on the growth and immune responses of pre-starter broilers. A total of 320 one-day-old birds (Ross 308) were allocated to 4 treatments with 8 blocks in a randomized complete block design. The four experimental diets consisted of a corn-soybean meal-based control diet, and three diets contained 0.5%, 1.0%, and 1.5% microalgae powder at the expense of cornstarch in the control diet. After feeding the experimental diets for 7 days, the body weight and feed intake of all birds were measured, and 8 birds were randomly selected from each treatment. Peripheral blood mononuclear cells (PBMCs) and serum were harvested for immune profile assessment, including cytokines and cell migration receptors. No differences in growth performance were observed among the treatments. The birds that were fed diets containing graded levels of microalga showed a linear increase in the mRNA expression of cytokine genes in PBMCs, including that of IL2, IL1β, and IL18 (P<0.05). With respect to the chemokine receptor genes in PBMCs, mRNA expression of CCR2, CCR9, and ITGA4 changed quadratically (P<0.05), but that of CCR7 increased linearly (P<0.01). Cytokine protein secretion in blood, including that of IL-1β and IL-6, increased linearly (P<0.01) with an increase in the microalgal content. Overall, the present results show that the indigenous microalgae powder used in this study could stimulate immunity with no detrimental effects on the growth performance of pre-starter broiler chickens.

Association Analysis of Monocyte Chemotactic Protein-3 (MCP3) Polymorphisms with Asthmatic Phenotypes

  • Park, Byung-Lae;Kim, Lyoung-Hyo;Choi, Yoo-Hyun;Cheong, Hyun-Sub;Park, Hae-Sim;Hong, Soo-Jong;Choi, Byoung-Whui;Lee, June-Hyuk;Uh, Soo-Taek;Park, Choon-Sik;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.77-81
    • /
    • 2005
  • The monocyte chemotactic protein-3 (MCP3), on chromosome 17q11.2-q12, is a secreted chemokine, which attracts macrophages during inflammation and metastasis. In an effort to discover additional polymorphism(s) in genes whose variant(s) have been implicated in asthma, we scrutinized the genetic polymorphisms in MCP3 to evaluate it as a potential candidate gene for asthma host genetic study. By direct DNA sequencing in twenty-four individuals, we identified four sequence variants within the 3 kb full genome including 1,000bp promoter region of MCP3; one in promoter region (-420T>C), three in intron (+136C>G, +563C>T, +984G>A) respectively. The frequencies of those four SNPs were 0.020 (-420T>C), 0.038 (+136C>G), 0.080 (+563C>T), 0.035 (+984G>A), respectively, in Korean population (n = 598). Haplotypes, their frequencies and linkage disequilibrium coefficients (|D'|) between SNP pairs were estimated. The associations with the risk of asthma, skin-test reactivity and total serum IgE levels were analyzed. Using statistical analyses for association of MCP3 polymorphisms with asthma development and asthma-related phenotypes, no significant signals were detected. In conclusion, we identified four genetic polymorphisms in the important MCP3 gene, but no significant associations of MCP3 variants with asthma phenotypes were detected. MCP3 variation/haplotype information identified in this study will provide valuable information for future association studies of other allergic diseases.

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

Immunomodulatory Effect of Epidermal Growth Factor Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Atopic Dermatitis

  • Namhee Jung;TaeHo Kong;Yeonsil Yu;Hwanhee Park;Eunjoo Lee;SaeMi Yoo;SongYi Baek;Seunghee Lee;Kyung-Sun Kang
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.311-323
    • /
    • 2022
  • Background and Objectives: Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying their effect needs to be studied continuously. Thus, the objective of this study was to investigate the immunomodulatory effect of epidermal growth factor (EGF) secreted by hUCB-MSCs on AD. Methods and Results: To explore the mechanism involved in the therapeutic effect of MSCs for AD, a secretome array was performed using culture medium of hUCB-MSCs. Among the list of genes common for epithelium development and skin diseases, we focused on the function of EGF. To elucidate the effect of EGF secreted by hUCB-MSCs, EGF was downregulated in hUCB-MSCs using EGF-targeting small interfering RNA. These cells were then co-cultured with keratinocytes, Th2 cells, and mast cells. Depletion of EGF disrupted immunomodulatory effects of hUCB-MSCs on these AD-related inflammatory cells. In a Dermatophagoides farinae-induced AD mouse model, subcutaneous injection of hUCB-MSCs ameliorated gross scoring, histopathologic damage, and mast cell infiltration. It also significantly reduced levels of inflammatory cytokines including interleukin (IL)-4, tumor necrosis factor (TNF)-α, thymus and activation-regulated chemokine (TARC), and IL-22, as well as IgE levels. These therapeutic effects were significantly attenuated at all evaluation points in mice injected with EGF-depleted hUCB-MSCs. Conclusions: EGF secreted by hUCB-MSCs can improve AD by regulating inflammatory responses of keratinocytes, Th2 cells, and mast cells.