DOI QR코드

DOI QR Code

Functions of Monocyte Chemotactic Protein-3 in Transgenic Mice Fed a High-Fat, High-Cholesterol Diet

  • An, So Jung (School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Jung, Un Ju (Department of Nutrition and Food Science, Kyungpook National University) ;
  • Choi, Myung-Sook (Department of Nutrition and Food Science, Kyungpook National University) ;
  • Chae, Chan Kyu (School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Oh, Goo Taek (Division of Life and Pharmaceutical Sciences, Ewha Woman's University) ;
  • Park, Yong Bok (School of Life Sciences and Biotechnology, Kyungpook National University)
  • Received : 2012.10.18
  • Accepted : 2012.10.30
  • Published : 2013.03.28

Abstract

Monocyte chemotactic protein-3 (MCP-3), a chemokine that is in a superfamily of structurally related small chemotactic cytokines involved in leukocyte trafficking, is regarded as a key factor in atherogenesis. In this study, we examined the changes in atherogenic parameters including hepatic lipid accumulation and oxidative balance in MCP- 3-overexpressing transgenic mice (MCP-3 mice) under atherogenic conditions. To induce an extreme atherogenic condition, mice were fed a high-fat, high-cholesterol (HFHC) diet for 12 weeks. The body weight and food intake were not changed by MCP-3 overexpression in the aorta. On a HFHC diet, the MCP-3 mice had higher plasma levels of total cholesterol and a higher atherogenic index compared with wild-type mice, although there were no differences in the plasma HDL-cholesterol and triglyceride levels. Furthermore, an increase in lipid accumulation was observed in the aortas as well as the livers of the HFHC diet-fed MCP-3 mice compared with wild-type mice. The activities of antioxidant enzymes increased in the livers of the HFHC diet-fed MCP-3 mice, whereas supplementation with antioxidants, naringin and hesperidin, reversed the activities of the hepatic antioxidant enzymes in HFHC diet-fed MCP-3 mice, indicating that there might be more oxidative damage to the tissues in the HFHC diet-fed MCP-3 mice leading to progression towards atherosclerosis and hepatic steatosis. Microarray analyses of the aorta revealed atherosclerosis-, PPARs-, lipoprotein receptor, and apolipoprotein-related genes that were affected by the HFHC diet in MCP-3 mice. These findings suggest that aortic MCP-3 overexpression may contribute to the development of atherosclerosis and hepatic steatosis under atherogenic conditions.

Keywords

References

  1. Aiello, R. J., P.-A. K. Bourassa, S. Lindsey, W. Weng, E. Natoli, B. J. Rollins, and P. M. Milos. 1999. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19: 1518-1525. https://doi.org/10.1161/01.ATV.19.6.1518
  2. Allain, C. C., L. S. Poon, C. S. G. Chan, W. Richmond, and P. C. Fu. 1974. Enzymatic determination of total serum cholesterol. Clin. Chem. 20: 470-475.
  3. Bhatia, L. S., N. P. Curzen, P. C. Calder, and C. D. Byrne.2012. Non-alcoholic fatty liver disease: A new and important cardiovascular risk factor? Eur. Heart J. 33: 1190-2000. https://doi.org/10.1093/eurheartj/ehr453
  4. Brea, A., D. Mosquera, E. Martín, A. Arizti, J. L. Cordero, and E. Ros. 2005. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: A case-control study. Arterioscler. Thromb. Vasc. Biol. 25: 1045-1050. https://doi.org/10.1161/01.ATV.0000160613.57985.18
  5. Bucolo, G. and H. David. 1973. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19:476-482.
  6. Carallo, C., G. Mancuso, G. Mauro, F. Laghi, B. Madafferi, C. Irace, et al. 2009. Hepatic steatosis, carotid atherosclerosis and metabolic syndrome: The STEATO Study. J. Gastroenterol. 44: 1156-1161. https://doi.org/10.1007/s00535-009-0125-8
  7. Charo, I. F. and M. B. Taubman. 2004. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95: 858-866. https://doi.org/10.1161/01.RES.0000146672.10582.17
  8. Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, et al. 1996. Accessing genetic information with highdensity DNA arrays. Science 274: 610-614. https://doi.org/10.1126/science.274.5287.610
  9. Decorde, K., E. Ventura, D. Lacan, J. Ramos, J. P. Cristol, and J. M. Rouanet. 2010. An SOD rich melon extract Extramel prevents aortic lipids and liver steatosis in diet-induced model of atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 20: 301-307. https://doi.org/10.1016/j.numecd.2009.04.017
  10. Erdely, A., D. Kepka-Lenhart, R. Salmen-Muniz, R. Chapman, T. Hulderman, M. Kashon, et al. 2010. Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: Responses to high fat and high cholesterol diets. PLoS One 5: e15253. https://doi.org/10.1371/journal.pone.0015253
  11. Fong, L. G., T. A. Fong, and A. D. Cooper. 1991. Inhibition of lipopolysaccharide-induced interleukin-1 beta mRNA expression in mouse macrophages by oxidized low density lipoprotein. J. Lipid Res. 32: 1899-1910.
  12. Getz, G. S. and C. A. Reardon. 2006. Diet and murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26: 242-249.
  13. Gosling, J., S. Slaymaker, L. Gu, S. Tseng, C. H. Zlot, S. G. Young, et al. 1999. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103: 773-778. https://doi.org/10.1172/JCI5624
  14. Gu, L., Y. Okada, S. K. Clinton, C. Gerard, G. K. Sukhova, P. Libby, and B. J. Rollins. 1998. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2: 275-281. https://doi.org/10.1016/S1097-2765(00)80139-2
  15. Gupte, A. A., J. Z. Liu, Y. Ren, L. J. Minze, J. R. Wiles, A. R. Collins, et al. 2010. Rosiglitazone attenuates age- and dietassociated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology 52: 2001-2011. https://doi.org/10.1002/hep.23941
  16. Hamilton, T. A., J. A. Major, and G. M. Chisolm. 1995. The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent. J. Clin. Invest. 95: 2020-2027. https://doi.org/10.1172/JCI117887
  17. Ishigaki, Y., H. Katagiri, J. Gao, T. Yamada, J. Imai, K. Uno, et al. 2008. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 118: 75-83. https://doi.org/10.1161/CIRCULATIONAHA.107.745174
  18. Jang, M. K., J. Y. Kim, N. H. Jeoung, M. A. Kang, M. S. Choi, and Y. B. Park. 2004. Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques. Biochem. Biophys. Res. Commun. 323:898-905. https://doi.org/10.1016/j.bbrc.2004.08.178
  19. Kim, H. J., G. T. Oh, Y. B. Park, M. K. Lee, H. J. Seo, and M. S. Choi. 2004. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci. 74: 1621-1634. https://doi.org/10.1016/j.lfs.2003.08.026
  20. Lichtman, A. H., S. K. Clinton, K. Iiyama, P. W. Connelly, P. Libby, and M. I. Cybulsky. 1999. Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semi-purified diets with and without cholate. Arterioscler. Thromb. Vasc. Biol. 19: 1938-1944. https://doi.org/10.1161/01.ATV.19.8.1938
  21. Malden, L. T., A. Chait, E. W. Raines, and R. Ross. 1991. The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocytederived macrophages. J. Biol. Chem. 266: 13901-13907.
  22. Murdoch, C. and A. Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95: 3032-3043.
  23. Nagy, L., P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans. 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR. Cell 93: 229-240. https://doi.org/10.1016/S0092-8674(00)81574-3
  24. Nelken, N. A., S. R. Coughlin, D. Gordon, and J. N. Wilcox. 1991. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88: 1121-1127. https://doi.org/10.1172/JCI115411
  25. Parks, E. J. and E. J. Parks. 2002. Changes in fat synthesis influenced by dietary macronutrient content. Proc. Nutr. Soc.61: 281-286. https://doi.org/10.1079/PNS2002148
  26. Ricote, M., J. Huang, and L. Fajas. 1998. Expression of the peroxisome proliferator-activated receptor $\gamma$ (PPAR$\gamma$) in human atherosclerosis and regulation in macrophage by colony stimulating factor and oxidized low-density lipoprotein. Proc. Natl. Acad. Sci. USA 95: 7614-7619 https://doi.org/10.1073/pnas.95.13.7614
  27. Samson, S., L. Mundkur, and V. V. Kakkar. 2012. Immune response to lipoproteins in atherosclerosis. Cholesterol. DOI:10.1155/2012/571846.
  28. Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. https://doi.org/10.1126/science.270.5235.467
  29. Shankar, K., A. Harrell, P. Kang, R. Singhal, M. J. Ronis, and T. M. Badger. 2010. Carbohydrate-responsive gene expression in the adipose tissue of rats. Endocrinology 151: 153-164. https://doi.org/10.1210/en.2009-0840
  30. Teodoro, B. G., A. J. Natali, S. A. Fernandes, L. A. Silva, R. A. Pinho, S. L. Matta, and M. D. Peluzio. 2012. Improvements of atherosclerosis and hepatic oxidative stress are independent of exercise intensity in LDLr(-/-) mice. J. Atheroscler. Thromb. 19: 904-911. https://doi.org/10.5551/jat.11569
  31. Tous, M., N. Ferre, J. Camps, F. Riu, and J. Joven. 2005. Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Mol. Cell. Biochem. 268: 53-58. https://doi.org/10.1007/s11010-005-2997-0
  32. Tsou, C. L., W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian, S. P. Weisberg, et al. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117: 902-909. https://doi.org/10.1172/JCI29919
  33. Warnick, J. B., J. Benderson, and J. J. Albers. 1982. HDL precipitation by dextran sulfate-$MgCl_{2}$ method. Clin. Chem. 28: 1397-1382.
  34. Weber, C., A. Zernecke, and P. Libby. 2008. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat. Rev. Immunol. 8: 802-815. https://doi.org/10.1038/nri2415
  35. Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15. https://doi.org/10.1093/nar/30.4.e15
  36. Zhang, S., X. Wang, L. Zhang, X. Yang, J. Pan, and G. Ren. 2011. Characterization of monocyte chemoattractant proteins and CC chemokine receptor 2 expression during atherogenesis in apolipoprotein E-null mice. J. Atheroscler. Thromb. 18: 846-856. https://doi.org/10.5551/jat.7211

Cited by

  1. 복분자 유래 성분 protocatechuic acid 투여가 고콜레스테롤 식이로 유도된 생쥐의 지질대사에 미치는 영향 vol.27, pp.4, 2014, https://doi.org/10.7732/kjpr.2014.27.4.271
  2. Tissue factor pathway inhibitor gene transfer prevents vascular smooth muscle cell proliferation by interfering with the MCP-3/CCR2 pathway vol.95, pp.11, 2013, https://doi.org/10.1038/labinvest.2015.106
  3. CCL7 contributes to the TNF‐alpha‐dependent inflammation of lesional psoriatic skin vol.24, pp.7, 2013, https://doi.org/10.1111/exd.12709
  4. The Potential of Fluocinolone Acetonide to Mitigate Inflammation and Lipid Accumulation in 2D and 3D Foam Cell Cultures vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/3739251
  5. Hesperidin: A Therapeutic Agent For Obesity vol.13, pp.None, 2013, https://doi.org/10.2147/dddt.s227499
  6. Cardiotrophin-1 Deficiency Abrogates Atherosclerosis Progression vol.10, pp.None, 2013, https://doi.org/10.1038/s41598-020-62596-6
  7. Transcription Factor MAFF (MAF Basic Leucine Zipper Transcription Factor F) Regulates an Atherosclerosis Relevant Network Connecting Inflammation and Cholesterol Metabolism vol.143, pp.18, 2013, https://doi.org/10.1161/circulationaha.120.050186
  8. Promoting plaque stability by gene silencing of monocyte chemotactic protein-3 or overexpression of tissue factor pathway inhibitor in ApoE-/- mice vol.29, pp.6, 2021, https://doi.org/10.1080/1061186x.2021.1878363