• 제목/요약/키워드: chemical tool

검색결과 789건 처리시간 0.027초

카드뮴 분석용 홍합(Mytilus coruscus) 표준물질의 균질성 및 안정성 시험평가 (Evaluation of Homogeneity and Stability of Korean Mussel (Mytilus coruscus) Standards for Cadmium Analysis)

  • 이하은;이장호;정다위;이수용;박기완;심규영
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.1041-1045
    • /
    • 2019
  • In this study, the KS A ISO Guide 35 was applied to develop analytical standards for heavy metal cadmium using the Korean mussel (Mytilus coruscus) and to evaluate the homogeneity and stability of the sample. Some of the crucial characteristics that reference materials must consist include homogeneity and stability of both intra- and inter-bottles. We tested homogeneity using ANOVA analysis and short-term stability using regression analysis. The variations of cadmium concentrations did not significantly differ between intra- and inter-bottles (F=0.41, p=0.90). For short-term stability verification, cadmium analysis results were not statistically significant as a result of the regression analysis (significance F=0.51, p=0.53). This suggests that we can not dismiss the null hypothesis that there is no significant variation in concentrations of cadmium over time. These results indicated that the cryogenic-milling process has statistically proven the short-term stability for materials from mussels in the chemical analysis of cadmium. Therefore, we propose that the Korean mussel's reference material developed for the proficiency test could be used as a tool to evaluate reliability and consistency in laboratories.

오염원에 대한 유도분극탐사 반응 및 사례 소개 (Induced Polarization Surveys of Contaminants and Introduction to Case Studies)

  • 김빛나래;;유희은;조아현;송서영;조성오;정인석;남명진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권2_spc호
    • /
    • pp.86-100
    • /
    • 2020
  • Analyzing and monitoring environmental contaminants based on geophysical exploration techniques have become important and it is now widely applied to delineate spatial distribution geophysical characteristics in wide area. Among the techniques, induced polarization (IP) method, which measures polarization effects on electrical potential distribution, has drawn much attention as an effective tool for environmental monitoring since IP is sensitive to changes in biochemical reactions. However, various reactions stemming from the presence of multiple contaminants have greatly enhanced heterogeneity of polluted sites to result in highly variable electrical characteristics of the site. Those contaminants influence chemical and physical state of soil and groundwater to alter electrical double layer, which in turn influences polarization of the media. Since biochemical reactions between microbes and contaminants result in various IP effects, IP laboratory experiments were conducted to investigate IP responses of the contaminated soil samples under various conditions. Field IP surveys can delineate the spatial distribution of contamination, while providing additional information about electrical properties of a target medium, together with DC resistivity. Reviewing IP effects of contaminants as well as IP surveys can serve as a good starting point for the application of IP survey in site assessment for environmental remediation.

Combinatorial Fine-Tuning of Phospholipase D Expression by Bacillus subtilis WB600 for the Production of Phosphatidylserine

  • Huang, Tingting;Lv, Xueqin;Li, Jianghua;Shin, Hyun-dong;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2046-2056
    • /
    • 2018
  • Phospholipase D has great commercial value due to its transphosphatidylation products that can be used in the food and medicine industries. In order to construct a strain for use in the production of PLD, we employed a series of combinatorial strategies to increase PLD expression in Bacillus subtilis WB600. These strategies included screening of signal peptides, selection of different plasmids, and optimization of the sequences of the ribosome-binding site (RBS) and the spacer region. We found that using the signal peptide amyE results in the highest extracellular PLD activity (11.3 U/ml) and in a PLD expression level 5.27-fold higher than when the endogenous signal peptide is used. Furthermore, the strain harboring the recombinant expression plasmid pMA0911-PLD-amyE-his produced PLD with activity enhanced by 69.03% (19.1 U/ml). We then used the online tool \RBS Calculator v2.0 to optimize the sequences of the RBS and the spacer. Using the optimized sequences resulted in an increase in the enzyme activity by about 26.7% (24.2 U/ml). In addition, we found through a transfer experiment that the retention rate of the recombinant plasmid after 5 generations was still 100%. The final product, phosphatidylserine (PS), was successfully detected, with transphosphatidylation selectivity at 74.6%. This is similar to the values for the original producer.

대학 연구실 안전을 위한 일상점검 개선방안에 관한 연구 - 델파이 조사를 기반으로 - (A Study on the Improvement of Daily Inspection for the Safety of University Laboratory - Based on Delphi surney -)

  • 최연우;이용환
    • 교육녹색환경연구
    • /
    • 제18권1호
    • /
    • pp.38-48
    • /
    • 2019
  • 본 연구는 대학 연구실 사고 예방을 위해서 실험 전 이루어지는 형식적인 일상점검을 보다 실효성 있는 일상점검표를 제시하는데 목적이 있다. 이를 위해 현재 실시중인 일상점검표와 선행연구자료를 재구성하여, 이를 토대로 2차에 걸친 전문가 델파이 조사로 연구를 실시하였다. 그 결과 연구실 정리정돈 등 일반안전 4개, 기계 및 공구 조임부 이상여부 등 기계기구안전 3개, 전기분전반 주변 적재금지 등 전기안전 3개, 유해인자취급 및 관리대장 비치 등 화공안전 6개, 소화기 점검 등 소방안전 3개, 가스용기 점점 등 가스안전 5개, 손 소독기 관리상태 등 생물안전 1개, 기타 1개, 총 26개 항목을 일상점검표로 제시하였다. 관련 전문가들의 의견을 종합해 보면, 실질적인 일상점검을 위해서는 쉽고 간소화 된 일상점검표가 필요한 것으로 나타났다.

내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증 (Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.125-132
    • /
    • 2020
  • 암반내의 절리는 암반의 전체적인 역학적 거동에 중요한 역할을 한다. 암반에 대한 수치해석은 절리면의 역학적 물성, 방향성, 간격 그리고 연속성을 정교하게 모델링할수 있어야 한다. 본 논문의 내재적 절리-연속체 접근법은 절리군을 포함한 암반의 역학적 모델을 제시한다. 암반에 대한 강성 텐서는 온전한 암석과 절리군의 역학적 특성으로부터 산정하였다. 이는 온전한 암석과 절리군에 대한 연속적 강성 시스템의 컴플라이언스 텐서 합으로부터 산정할 수 있다. 암반사면의 평면파괴에 대한 수치해석은 기존의 daylight envelope과 측면한계를 적용하는 경험적인 방법과 상당히 일치함을 확인하였다. 개발된 내재적 절리-연속체 모델은 연속체 기반으로 수식화되어 기존의 절리에 대한 열-수리-화학적 실험적 결과들을 실제 수치해석에 적용할수 있을 것이다.

국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향 (Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy)

  • 정세웅;김성진;박형석;서동일
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

일반 유기물 항목과 분광특성을 이용한 한강수계 내 난분해성 물질 지표 제시 (Development of Estimation Indices for Refractory Organic Matter in the Han-River Basin using Organic Matter Parameters and Spectroscopic Characteristics)

  • 이보미;이태환;허진
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.625-633
    • /
    • 2011
  • A long-term water quality monitoring in the Han River Basin reveals a consistent increasing trend for the concentration of refractory organic matter (R-OM) in major monitoring sites of the watershed. Because the determination of R-OM concentrations typically requires a long time of microbial incubation, it is essential to present the estimation indices for R-OM for an efficient watershed management. In this study, a number of surface water samples were classified into three groups, each of which were collected from Lake Paldang, rivers at rain and non-rain events, respectively. The corresponding R-OM concentrations were correlated with biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) concentrations as well as ultraviolet and fluorescence intensities of the filtered samples. Among the traditional organic matter parameters, TOC exhibited the highest correlation coefficient with the R-OM concentrations regardless of the types of the sample groups. The equations for conversing TOC into R-OM concentrations were finally suggested as $0.43{\times}TOC+1.12$, $0.44{\times}TOC+0.61$, $0.24{\times}TOC+1.28$ for river samples at rain and non-rain events, and lake samples, respectively. TOC-BOD(C), the values of the TOC concentrations subtracted by carbon-converted BOD concentrations, was a good index for estimating the absolute concentrations of R-OM. UV absorbance at 254 nm was well correlated with R-OM concentrations of river samples while fluorescence intensities at 350 nm showed an excellent relationship with R-OM concentration of the lake samples. Our results suggests that simple spectroscopic parameters could be applied for in-situ monitoring tool techniques in watersheds.

새만금호 수질예측 모의를 위한 EFDC 모형의 평가 (Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir)

  • 전지혜;정세웅;박형석;장정렬
    • 한국물환경학회지
    • /
    • 제27권4호
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

CFD 해석을 통한 4종의 건식 분류층 석탄가스화기 설계개념 비교 (Comparison of Design Concepts for Four Different Entrained-Bed Coal Gasifier Types with CFD Analysis)

  • 윤용승;주지선;이승종
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.566-574
    • /
    • 2011
  • 석탄가스화기는 석탄가스화복합발전과 석탄간접액화 공정에서 고효율을 얻기 위한 중요한 설비 중 하나이다. 현재 여러 종류의 석탄가스화기가 성공적으로 사용되고 있지만, 간단하면서도 신뢰도를 높일 수 있는 다양한 설계 변경이 가능하다. 건식 분류층 가스화기 4종류의 형태를 제시하고 이들을 체류시간, 가스화기 출구 합성가스의 온도, 합성가스 조성을 중점으로 비교하였다. 설계개념이 적정한지를 우선 파악하고자 반응을 배제한(cold-flow) CFD 해석을 먼저 수행하였고, 실제 가스화기 조건을 반영한 화학반응이 고려된(hot-flow) 해석을 수행하여 비교하였다. 가스화기 설계에 CFD를 적용하는 데는 슬랙의 거동과 슬랙탭 설계 등 측면에서 제한적이기는 하지만, 다양한 설계개념 중에서 가능성이 높은 가스화기 형태의 범위를 좁히는 데 매우 유용하게 사용될 수 있다.

Extraction of dietary fibers from cassava pulp and cassava distiller's dried grains and assessment of their components using Fourier transform infrared spectroscopy to determine their further use as a functional feed in animal diets

  • Okrathok, Supattra;Thumanu, Kanjana;Pukkung, Chayanan;Molee, Wittawat;Khempaka, Sutisa
    • Animal Bioscience
    • /
    • 제35권7호
    • /
    • pp.1048-1058
    • /
    • 2022
  • Objective: The present study was to investigate the extraction conditions of dietary fiber from dried cassava pulp (DCP) and cassava distiller's dried grains (CDG) under different NaOH concentrations, and the Fourier transform infrared (FTIR) was used to determine the dietary fiber components. Methods: The dried samples (DCP and CDG) were treated with various concentrations of NaOH at levels of 2%, 4%, 6%, and 8% using a completely randomized design with 4 replications of each. After extraction, the residual DCP and CDG dietary fiber were dried in a hot air oven at 55℃ to 60℃. Finally, the oven dried extracted dietary fiber was powdered to a particle size of 1 mm. Both extracted dietary fibers were analyzed for their chemical composition and determined by FTIR. Results: The DCP and CDG treated with NaOH linearly or quadratically or cubically (p<0.05) increased the total dietary fiber (TDF) and insoluble fiber (IDF). The optimal conditions for extracting dietary fiber from DCP and CDG were under treatment with 6% and 4% NaOH, respectively, as these conditions yielded the highest TDF and IDF contents. These results were associated with the FTIR spectra integration for a semi-quantitative analysis, which obtained the highest cellulose content in dietary fiber extracted from DCP and CDG with 6% and 4% NaOH solution, respectively. The principal component analysis illustrated clear separation of spectral distribution in cassava pulp extracted dietary fiber (DFCP) and cassava distiller's dried grains extracted dietary fiber (DFCDG) when treated with 6% and 4% NaOH, respectively. Conclusion: The optimal conditions for the extraction of dietary fiber from DCP and CDG were treatment with 6% and 4% NaOH solution, respectively. In addition, FTIR spectroscopy proved itself to be a powerful tool for fiber identification.