• Title/Summary/Keyword: chemical testing

Search Result 831, Processing Time 0.028 seconds

Microbiological Hazard Analysis for HACCP System Application to Vinegared Pickle Radishes (식초절임 무의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • This study has been performed for 150 days from February 1 - June 31, 2012 aiming at analyzing biologically hazardous factors in order to develop HACCP system for the vinegared pickle radishes. A process chart was prepared as shown on Fig. 1 by referring to manufacturing process of manufacturer of general vinegared pickle radishes regarding process of raw agricultural products of vinegared pickle radishes, used water, warehousing of additives and packing material, storage, careful selection, washing, peeling off, cutting, sorting out, stuffing (filling), internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, E. coli O157:H7, Clostridium perfringens, Yeast and Mold before and after washing raw radishes, Bacillus cereus was $5.00{\times}10$ CFU/g before washing but it was not detected after washing and Yeast and Mold was $3.80{\times}10^2$ CFU/g before washing but it was reduced to 10 CFU/g after washing and other pathogenic bacteria was not detected. As a result of testing microorganism variation depending on pH (2-5) of seasoning fluid (condiment), pH 3-4 was determined as pH of seasoning fluid as all the bacteria was not detected in pH3-4. As a result of testing air-borne bacteria (number of general bacteria, colon bacillus, fungus) depending on each workplace, number of microorganism of internal packing room, seasoning fluid processing room, washing room and storage room was detected to be 10 CFU/Plate, 2 CFU/Plate, 60 CFU/Plate and 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of general bacteria and colon bacillus was represented to be high as 346 $CFU/Cm^2$ and 23 $CFU/Cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, colon bacillus was not detected in all the specimen but general bacteria was most dominantly detected in PP Packing machine and Siuping machine (PE Bulk) as $4.2{\times}10^3CFU/Cm^2$, $2.6{\times}10^3CFU/Cm^2$, respectively. As a result of analyzing above hazardous factors, processing process of seasoning fluid where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and threshold level (critical control point) was set at pH 3-4. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.

Life-time Prediction of a FKM O-ring using Intermittent Compression Stress Relaxation (CSR) and Time-temperature Superposition (TTS) Principle (간헐 압축응력 완화와 시간-온도 중첩 원리를 이용한 FKM 오링의 수명 예측 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Park, Sung-Doo;Park, Sung-Han;Min, Yeo-Tae;Kim, Won-Ho;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • Intermittent CSR testing was used to investigate the degradation of an FKM O-ring, also the prediction of its life-time. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 60 and $160^{\circ}C$. In the high temperature of range ($100-160^{\circ}C$) O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy was about 60.2 kJ/mol. From Arrhenius plots, predicted life-times were 43.3 years and 69.9 years for 50% and 40% failure conditions, respectively. Based on TTS (time-temperature superposition) principle, degradation was observed at $60^{\circ}C$, and could save testing time. Between 60 and $100^{\circ}C$ the activation energy decreased to 48.3 kJ/mol. WLF(William-Landel-Ferry) plot confirmed that O-rings show non-linear degradation behavior under $80^{\circ}C$. The life-time of O-rings predicted by TTS principle was 19.1 years and 25.2 years for each failure condition. The life-time predicted by TTS principle is more conservative than that from the Arrhenius relationship.

Relationship between Fertilizer Application Level and Soil Chemical Properties for Strawberry Cultivation under Greenhouse in Chungnam Province (충남지역 시설 딸기재배지 시비수준과 토양 화학성과의 관계)

  • Choi, Moon-Tae;Lee, Jin-Il;Yun, Yeo-Uk;Lee, Jong-Eun;Lee, Bong-Chun;Yang, Euy-Seog;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Nowadays, Korean farmers rely more on chemical fertilizers than low input sustainable agriculture drawn from the farm itself. In order to improve soil nutritional imbalance for environment friendly agriculture in greenhouse, we have carried out a relationship between fertilizer application level, and soil chemical properties for strawberry cultivation at 56 sites in Chungnam Province. Average amount of nitrogen as basal fertilization was 92.3 Mg $ha^{-1}$ which higher 2.6 times compared to standard amount of basal fertilizer. In case of compost application more than 30 Mg $ha^{-1}$, excessive ratio compared to optimum level was higher 1.8 times for EC value, 3.0 times for available phosphate, 2.6 times for exchangeable potassium, 1.7 times for exchangeable calcium, and 1.6 times for exchangeable magnesium, respectively. Amounts of compost application significantly correlated with available phosphate (r=0.370, $p{\leq}0.01$), exchangeable potassium(r=0.429, $p{\leq}0.01$), exchangeable calcium(r=0.404, $p{\leq}0.01$), exchangeable magnesium(r=0.453, $p{\leq}0.01$), and exchangeable sodium(r=0.369, $p{\leq}0.01$), respectively. Our results suggest that soil nutrients management for sustainable agriculture was optimum fertilization based on soil testing for strawberry cultivation in greenhouse.

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

A Study on Development of Alternative Non-aqueous Cleaning Agents to Ozone Depletion Substances and its Field Application (오존파괴물질 대체 비수계세정제 개발 및 현장 적용 연구)

  • Park, Yong-Bae;Bae, Jae-Heum;Lee, Min-Jae;Lee, Jong-Gi;Lee, Ho-Yeoul;Bae, Soo-Jung;Lee, Dong-Kee
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • Flux or solder is used in soldering process for manufacturing electronic parts such as printed circuit boards (PCB). After soldering process, residual flux and solder paste on the parts should be removed since their residuals could cause performance degradation or failure of parts due to their corrosion and electric leakage. Ozone depletion substances such as 1,1,1- trichloroethane (TCE) and HCFC-141b have widely been using for removal of residual flux and solder paste after soldering process In manufacturing of electronic parts until now. In this study, non-aqueous cleaning agents without flash point were developed and applied to industrial field for replacement of cleaning agents with ozone depletion. In order to develop non-aqueous cleaning agents without ethers, esters, fluoride- type solvents. And their physical properties and cleaning abilities were evaluated, and they were applied to industrial fields for cleaning of flux and solder on the PCB. And vacuum distillation apparatus were operated to determine their operating conditions and recycling yields for recycling of used cleaning agents formulated in this study. As a result of physical properties measurement of our formulated cleaning agents, they were expected to have good wetting and penetrating power since their surface tensions were relatively low as 18.0~20.4 dyne/$cm^2$ and their wetting indices are relatively large. And some cleaning agents holding fluoride-type solvents as their components did not have any flash point and they seemed to be safe in their handling and storage. The cleaning experimental results showed that some cleaning agents were better in their cleaning of flux and solder paste than 1,1,1-TCE and HCFC-141b. And industrial application results of the formulated cleaning agents for cleaning PCB indicated that they can be applicable to industry due to their good cleaning capability in comparison with HCFC-141b. The recycling experiments of the used formulated cleaning agents through a vacuum distillation apparatus also showed that their 91.9~97.5% could be recycled with its proper operating conditions.

A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging (노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구)

  • Park, Byung Chan;Chang, Il Ho;Kim, Sun Tae;Hwang, Taek Sung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.285-292
    • /
    • 2009
  • It has been observed that, after long term storage, some ammunitions are misfired by tamping (combustionstopping) due to aging of the chemicals loaded in the ammunitions. Used in ammunitions are percussion powder which provides the initial energy, igniter which ignites the percussion powder, and a delay system that delays the combustion for a period of time. The percussion powder is loaded first, followed by the igniter and then the delay system, and the ammunitions explode by the energy being transferred in the same order. Tamping occurs by combustion-stopping of the igniter or insufficient energy transfer from the igniter to the delay system or the combustion-stopping of the delay system, which are suspected to be caused by low purity of the components, inappropriate mixing ratio, size distribution of particulate components, type of the binder, blending method, hydrolysis by the humidity penetrated during the long term storage, and chemical changes of the components by high temperature. Goal of this study is to find the causes of the combustion-stopping of the igniter and the delay system of the ammunitions after long term storage. In this study, a method was developed for testing of the combustion-stopping, and the size distributions of the particulate components were analyzed with field-flow fractionation (FFF), and then the mechanism of chemical change during long term storage was investigated by thermal analysis (differential scanning calorimetry), XRD (X-ray diffractometry), and XPS (X-ray photoelectron spectroscopy). For the ignition system, M (metal)-O (oxygen) and M-OH peaks were observed at the oxygen's 1s position in the XPS spectrum. It was also found by XRD that $Fe_3O_4$ was produced. Thus it can be concluded that the combustion-stopping is caused by reduction in energy due to oxidation of the igniter.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Sorghum×Sudangrass Hybrid Cultivation (수수×수단그라스 재배시 녹비작물 혼입에 따른 새만금간척지 토양환경 개선 효과)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Jeong, Jae-Hyeok;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.744-748
    • /
    • 2012
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during sorghum${\times}$sudangrass hybrid (SSH) cultivation over the past three years from 2009 to 2011. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by rates of additional nitrogen fertilizer ($100kg\;ha^{-1}$) and decreased percentage of 30 50 70 100 fertilization in addition to non nitrogen fertilization (NNF). Soil physico-chemical properties, growth and yield potential were examined. The results were as follows. The testing soil was showed strong alkaline saline soil with low organic matter contents and less available phosphate while exchangeable sodium and magnesium were higher. Soil salinity was increased during cultivation of summer crop. However, SSH was not affected by salt content. The fresh weight of GMC at incorporation time was $18,345kg\;ha^{-1}$. Content of total nitrogen at incorporation time was 3.09% and the C/N ratio was 12.8. Fresh and dry matter yield of SSH were higher in the order of 30%, CF, N50%, N70%d, N100%, and NNF. Fresh and dry matter yield of SSH increased in the order of CF ($55,050kg\;ha^{-1}$, $16,250kg\;ha^{-1}$), N contents from 30% to 9%. Soil physical properties, such as bulk density were decrease with incoporation of GMC, while porosity was increased. Soil chemical properties, such as pH was decreased while content of exchangeable calcium, available phosphate, and organic matter were increased. Also contents of exchangeable sodium and potassium were decreased with incorporation of GMC than those before experiment. Thus, we assumed that incorporation of hairy vetch was more effective that can lead to reduce chemical nitrogen fertilizer and to improve soil environment in cultivating SSH on Saemangeum reclaimed land.

Long-term Changes in Soil Chemical Properties in Organic Arable Farming Systems in Korea (작물의 지속적인 유기 재배가 토양의 이화학적 특성변화에 미치는 영향)

  • Lee, Yun-Jeong;Choe, Du-Hoi;Kim, Seung-Hwan;Lee, Sang-Min;Lee, Yong-Hwan;Lee, Byung-Mo;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.228-234
    • /
    • 2004
  • In organic farming, nutrients for the crop production are mostly supplied by compost containing various organic materials. The long-term organic cultivation would result in continuous changes of soil chemical properties and fertility. The aim of this study was to investigate the contribution of long-term organic cultivation to the soil fertility in Korea focusing on the chemical properties of soil. Soil samples were collected from organic farms that had been cultivated for 8-10 years after certification of organic product through the conversion periods of 2-3 years. Thereby each organic farm had acquired optimal cultivating techniques and soil condition. We separated organic farms into three groups by cultivating crops, i.e. leaf vegetables, fruit vegetables and fruit trees. In each group, five representative farms were chosen in order to investigate the relationships between application rate of compost and nutrient contents in soil. The application rate of compost was approximately $10-15Mg\;10a^{-1}$ for the first 2-3 years at the beginning of organic farming and then reduced to a rate of $3-4Mg\;10a^{-1}$ after stabilization of organic matter content in soil with $30-50g\;10a^{-1}$. However, the continuous organic farming for 8-10 years resulted in accumulation of nutrients, especially of P, in soil probably due to the excessive amounts of compost applied. In conclusion, we suggest that the application rate and organic sources of compost should be decided on the basis of P content in soil by soil testing and thereafter the lack of soil N content for crop cultivation should be compensated by crop rotation with such as legumes. This might be an approach to the original meaning of organic farming as an environmental friendly agriculture.

Status of Fertilizer Application and Soil Management for Major Vegetable Crops in Farmers' Fields of Alpine Area (고랭지 주요작물의 시비 및 토양관리 실태)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Zhang, Yong-Seon;Hwang, Seon-Woong;Im, Su-Jeong;Kim, Chang-Bae;Mun, Yeong-Hun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.357-365
    • /
    • 2006
  • The investigations were conducted to find out the situation of fertilizer use and the contents of soil chemical components on summer vegetable crops at 791 farmers' upland fields located in the parts of Gangwon-do, Gyengsangbuk-do and Jeollabuk-do of alpine area. Major vegetable crops were potato, Chinese cabbage, radish, carrot, onion, and cabbage. From the location surroundings cultivated alpine vegetable crops, the orders were Gangwon-do>Gyeongsangbuk-do>Jeollabuk-do part in the sizes of a fie1d area and the height above sea level, and Jeollabuk-do>Gyeongsangbuk-do>Gangwon-do part in the slope degrees. The soil texture was of wide distribution on sandy loam soil for Gangwon-do(76%) and Jeollabuk-do part(64%), and 1oam(42%) and sandy loam soil(35%) for Gyeongsangbuk-do part. From the numbers of investigated fields, the distribution of slope degree was wider than those of height above sea level in relation to location surroundings. The upland soils of 785 fields cultivated vegetable crops were sampled at 0~15 cm of top soil before seeding or transplanting and analyzed. On an average, pH, organic matter, available phosphate and exchangeable potassium, calcium, magnesium of soil were 5.7, $27.6g\;kg^{-1}$, $765mg\;kg^{-1}$, $1.16cmol_c\;kg^{-1}$, $6.1cmol_c\;kg^{-1}$, and $1.6cmol_c\;kg^{-1}$, respectively. The average cation exchange capacity(CEC) of 120 sites in Gangwon-do part was $9.2cmol_c\;kg^{-1}$. The content of organic matter, exchangeable potassium, exchangeable calcium and exchangeable magnesium was higher, while that of available phosphate was lower with slope degrees. And the content of major chemical components in carrot soil was lower in comparison with other crop soils. The average levels of N, $P_2O_5$, $K_2O$, livestock manure and lime fertilizer of 785 Belds applied by farmers were 335, 198, 244, 12,680 and $1,750kg\;ha^{-1}$, respectively, for summer vegetable crops in alpine area. The average amounts of $N-P_2O_5-K_2O$ fertilizers applied by farmers in 785 Gelds of vegetable crops were higher 1.7~2.0-4.2~7.0-1.4~2.0 times on potato, 1.4~1.6-4.6~8.3-3.5~4.2 times on Chinese cabbage, and 1.2~1.3-4.2~7.2-3.0~3.61 times on radish than the rates of NPK fertilizers based on soil testing for each crop.