• Title/Summary/Keyword: chemical testing

Search Result 831, Processing Time 0.03 seconds

A study on the comparative test of chemical and thermal properties of virgin and recycled PET products (버진 및 리사이클 PET 제품의 화학적·열적 특성 비교시험에 관한 연구)

  • Kim, Kyoung Pil;Seo, Kyung Jin;Park, Soo-Yong;Chung, Ildoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • As the interest and demand in the recycled yarn field has increased rapidly worldwide, domestic companies are also promoting research and development and business on recycled yarn. The chemical and thermal properties of four types of virgin and recycled PET samples from A and B company, which are the leading domestic companies in the recycled polyester yarn business, were confirmed through infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Virgin and recycled PET from two companies were compared. FT-IR spectroscopy revealed the typical spectra of PET for both companies and a different peak at 872 cm-1. DSC confirmed that the melting point and crystallization temperature of recycled PET were lower than those of virgin PET. These results indicate that small amounts of contaminants are an important parameter affecting the thermal properties of recycled PET. In the DSC results after seven repeats of the heating and cooling processes, all four samples showed that a lower melting point, crystallization temperature, and low heat flow intensity increased with increasing number of cycles. The results of melting and crystallization enthalpy also showed similar patterns.

Experimental Study on the Adhesion and Performance Evaluation of Joints for Modified Polyethylene Coated Steel Pipes (개질 폴리에틸렌 코팅 강관의 부착 및 체결부 성능 평가 연구)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • In this study, as part of the development of a monitoring system for the efficient maintenance of steel pipes, an experimental study was conducted to evaluate the performance of steel pipes treated with modified polyethylene coating. In the case of the conventional mechanical pre-coating method, there was a deterioration in polyethylene adhesion during expansion testing, which led to the application of a chemical pre-treatment process using a calcium-mixed phosphate zinc film to resolve this issue. SEM and EDX analyses showed that the densest structure was observed at a Zn/Ca ratio of 1.0, and improved heat resistance compared to the conventional method was confirmed. Additionally, to prevent coating detachment during expansion, an evaluation of adhesion and elongation was conducted on steel pipes with modified polyethylene coating, incorporating materials such as elastomers based on maleic anhydride grafting, metal oxides, blocking agents, and slip agents. Experimental results showed that the specimen (S4) containing all modified materials exhibited more than a 25% performance improvement compared to the specimen (S2) containing only metal oxides. Lastly, the development and performance evaluation of wedge-shaped socketing and pressing wheels, which are part of the pipe fixing accessories, were conducted to prevent surface coating damage on the completed pipes.

Fabrication of a Moldable, Long-Term Stable, High-Performance Conductive Hydrogel Composed of Biocompatible Materials (생체친화적 재료로 구성된 성형 가능하고 장시간 안정성을 지닌 고성능 전도성 하이드로겔 제작)

  • Seon Young Lee;Hocheon Yoo;Eun Kwang Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.390-398
    • /
    • 2024
  • The entire process of producing a conductive hydrogel for use as electrodes, such as in biomedical applications like electrocardiogram (ECG) and electromyogram (EMG), was conducted through a one-pot synthesis method where all reactions took place within a single reactor. In this study, the poly-(Hydroxyethyl methacrylate) (pHEMA)/Chitosan (CS) hydrogel was fabricated with improved functionality by incorporating phytic acid (PA). For a pHEMA hydrogel without PA, the functionality was 47.8%, while the pHEMA/CS/PA-200 hydrogel with 0.2 mL of PA exhibited a functionality of 67.8%, indicating an increase of approximately 20%. As the PA content increased to 0.025, 0.05, and 0.2 mL, the ionic conductivity also increased to 0.057, 0.14, and 1.5 S/m, respectively. Notably, the HCP-200 hydrogel showed a conductivity 104 times greater than the pHEMA hydrogel. Therefore, the HCP-200 hydrogel, among the three concentrations, was synthesized for further testing, including shaping and direct attachment to three electrodes for subsequent ECG and EMG signal analysis. In the case of ECG, the signal peak heights were similar for the existing electrodes, Ag/AgCl and HCP gel. The average value of the EMG signal peak height was approximately 4 times higher for HCP gel.

Effects of Glufosinate-Ammonium to Earthworms, Soil Microorganisms and Crops (제초제 glufosinate-ammonium의 지렁이 및 토양 미생물과 작물에 미치는 영향)

  • Kim, Yong-Seog;Jeon, Yong-Bae;Choi, Hae-Jin;Kim, Song-Mun;Kim, Sung-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • In order to investigate the impacts of non-selective herbicide, glufosinate-ammonium (ammonium 4-[hydroxy(methyl)phosphinoyl] -DL-homoalaninate, GLA) to the non-target organisms, earthworm was exposed to GLA in the field soil for a month, and microbial populations in the soil were investigated after application of GLA. Simultaneously, the residues of GLA and its metabolite, 3-MPP were analyzed in the same soil. Meanwhile, to elucidate the influence of GLA to the growth of non-target crops incase of inter-furrow application, the amounts of carotenoid, chlorophyll, amino acid, proteins and sugars in the leaves of potato and chinese cabbage grown in the same field were investigated. In result, the dead earthworm was not observed during the test period, and the increasing rates of bodyweight were $9.410{\sim}11.603%$ in GLA-treated plots and 5.645% in GLA-untreated plots. The populations of fungi, bacteria and actinomycetes in the GLA-treated soils were $6.2{\times}10^4$, $1.5{\times}10^6$ and $5.7{\times}10^4$, respectively. They maintained relatively similar levels to the control which were $3.7{\times}10^4$, $3.7{\times}10^5$ and $3.7{\times}10^4$, respectively. In residue analysis, the limit of detection of GLA was 0.02 mg $kg^{-1}$, that of 3-MPP was the same level, and the half-life of GLA was 15 days in sandy clay loam soil. This result indicates that GLA was degraded very quickly in field soil. On the other hand, the amounts of physiological, biochemical components such as carotenoid, amino acid, chlorophyll, protein and sugar were ranged from 90.0 to 104.3% in potato and from 99.0 to 112.7% in chinese cabbage. Comparing with hand-weeded plots, it is indicated that GLA had not affected to the growth of non-target crops when applied at inter-furrow in crops-growing field.

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

Comparison or Antioxidative Activities or Crotaiarta sessiflora L. Extracts from Leaves, Seed, Stem and Root (활나물 부위별 추출물의 항산화 활성 비교)

  • Woo, NaRiYah;Kim, Tae-Su;Park, Hee-Woon;Park, Chun-Geon;Seong, Ha-Jeong;Ko, Sang-Heom;Jung, Jin-Woo;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1297-1301
    • /
    • 2005
  • This study was carried to develop the new functional food material by exploring natural antioxidant substances of Crotalaria sessiflora L. We compared antioxidative activity of potential antioxidant substances extracted from Crotalaria sessiflora L. The order of extract yield of Crotalaria sessiflora L. were stem > loaves > seed > root. Antioxidative activities of Crotalaria sessiflora L. were measured by total polyphenol contents EDA (electron donating activity), SOD (superoxide dismutase) -like activity, hydroxyl radical scavenging ability and hydrogen peroxide radical scavenging ability. Total polyphenol acid content was much higher in leaves Ex than other extracts. And leaves Ex showed the most excellent antioxidative activity ($86.27\%$) in terms of SOD-like activity. The EDA was ordered loaves Ex > stem Ex > seed Ex > root Ex. Hydroxy radical scavenging ability was the most effective in loaves Ex, and hydorogen Peroxide radical scavenging ability was the highest in seed Ex. Therefore we could be certain that leaves Ex was the most effective in antioxidative activity from Crotalaria sessiflora L.

Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials (금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계)

  • 김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Nitrogen ion implantation and ion plating techniques were applied for improvement of the wear resistance of metallic implant materials. In this work, the wear dissolution behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The amounts of Cr and Ni ions worn-out from the specimens were Investigated using an electrothermal atomic absorption spectrometry. Furthermore, the Ti(Grade 2) disks were coated with TiN, ZrN and TiCN by use of low temperature arc vapor deposition and the wear resistance of the coating layers was compared with that of titanium. The chemical compositions of the nitrogen ion implanted and nitride coated layers were examined with a scanting auger electron spectroscopy. It wat observed that the metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. From the results obtained, it was shown that the nitrogen ion implanted zone obtained with 100 KeV ion energy was easily removed within 200,000 revolutions from a wear dissolution testing under a similar load condition when applied to artificial hip joint. The remarkable improvement in wear resistance weir confirmed by the nitrides coated Ti materials and the wear properties differ greatly according to the chemical composition of the coating layers. for specimens with the same coating thickness of about 3$\mu\textrm{m}$, TiCN coated Ti showed the highest wear resistance. However, after removing the coating layers, the wear rates of all nitrides coated Ti reverted to their normal rates of below 10,000 revolutions from Ti-disk-on-disk wear testing under the same load condition. From the results obtained, it is suggested that the insufficient depth of the 100 Kel N$\^$+/ ion implanted zone and of the nitrides coated layers of 3$\mu\textrm{m}$ are subject to restriction when used as frictional parts of load bearing implants.

A comparative study on the fracture behavior of zironia, glass infiltrated alumina and PFM full crown system (지르코니아, 유리침투알루미나 및 PFM 전부관 시스템의 파절 경향에 관한 비교연구)

  • Lee, Sang-Hyeok;Ahn, Jin-Soo;Kim, Myung-Ho;Lim, Bum-Soon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the fracture behavior of Zironia, glass infiltrated Alumina and PFM full crown system. Materials and methods: Fifteen crowns for each of 3 experimental groups (Zironia, glass infiltrated Alumina and PFM full crown) were made by the conventional method. The crowns mounted on the testing jig were inclined in 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The mean fracture strengths were $588.3{\pm}49.6MPa$ for zirconia system, $569.1{\pm}61.8MPa$ for PFM system and $551.0{\pm}76.5MPa$ for glass-infiltrated alumina system (P>.05). 2. The mean shear bond strengths were $25.5{\pm}5.6MPa$ for zirconia system, $38.9{\pm}5.0MPa$ for Ni-Cr alloy system and $39.4{\pm}5.1MPa$ for glass-infiltrated alumina system. 3. The chemical bonding was observed at interfaces between PFM or glass-infiltrated alumina and veneering porcelain, however, no chemical bonding was observed at interface between zirconia and veneering porcelain. Conclusion: With the study, the fracture strengths of PFM crown system had a higher fracture strength than conventional zirconia system crown and glass-infiltrated alumina crowns. and than the shear bond strengths glass-infiltrated alumina system had a higher shear bond strength than conventional PFM system and zirconia system.

ENAMEL ADHESION OF LIGHT-AND CHEMICAL-CURED COMPOSITES COUPLED BY TWO STEP SELF-ETCH ADHESIVES (2단계 자가 산부식 접착제와 결합된 광중합과 화학중합 복합레진의 법랑질 접착)

  • Han, Sae-Hee;Kim, Eun-Soung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.169-179
    • /
    • 2007
  • This study was to compare the microshear bond strength $({\mu}SBS)$ of light- and chemically cured composites to enamel coupled with four 2-step self-etch adhesives and also to evaluate the incompatibility between 2-step self-etch adhesives and chemically cured composite resin. Crown segments of extracted human molars were cut mesiodistally, and a 1 mm thickness of specimen was made. They were assigned to four groups by adhesives used: SE group (Clearfil SE Bond) AdheSE group (AdheSE), Tyrian group (Tyrian SPE/One-Step Plus), and Contax group (Contax) Each adhesive was applied to a cut enamel surface as per the manufacturer's instruction. Light-cured (Filtek Z250) or chemically cured composite (Luxacore Smartmix Dual) was bonded to the enamel of each specimen using a Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n=20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at 95% level. Also the interface of enamel and composite was evaluated under FE-SEM. The results of this study were as follows ; 1. The ${\mu}SBS$ of the SE Bond group to the enamel was significantly higher than that of the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin (p < 0.05). 2. There was not a significant difference among the hdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin. 3. The ${\mu}SBS$ of the light-cured composite resin was significantly higher than that of the chemically cured composite resin when same adhesive was applied to the enamel (p < 0.05). 4. The interface of enamel and all 2-step self-etch adhesives showed close adaptation, and so the incompatibility of the chemically cured composite resin did not show.

Studies on Anti-Wrinkle and Whitening Effects of Liposomes Containing Acerola Extract Mixture (아세로라 추출물 혼합 리포좀의 주름, 미백 효과에 대한 연구)

  • Kim, Su Jin;Oh, Won Jun;Kwon, Sung Pil;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.341-352
    • /
    • 2021
  • Acerola is an excellent ingredient because of its high natural vitamin C content, but it is difficult to stabilize and has hardly been studied as a cosmetic material. Therefore, this study developed a mixed liposome preparation for stabilizing acerola extract. As a safety test, the skin irritation test was evaluated by BCOP assay and HET-CAM assay. We evaluated the inhibition of tyrosinase activity, the whitening effect of melanin production, and the wrinkle effect of prochloragentype-I C-peptide production, and confirmed the possibility of functional cosmetics. In addition, a cream of liposomes containing acerola extract mixture was developed to evaluate the clinical studies of skin wrinkles and whitening. BCOP assay, HET-CAM assay and human skin primary irritation test results of liposomes containing acerola extract mixture showed no irritation and were safe from skin and eye. The result of tyrosinase activity by 75.8% at 1,000 ㎍/mL. As a result of the melanogenesis inhibition test, liposome with acerola extract showed the melanin content by 46.2% at 1,000 ㎍/mL that does not effect the viability of the B16F10 cell line. The result of collagen production test using ELISA kit, liposomes containing acerola extract mixture showed collagen synthesis ability by 152.1% at 1,000 ㎍/mL that does not affect the viability of the HS68 cell line. But it did not showed any inhibition of collagenase (MMP-1) activity at all concentrations in the MMP-1 activity inhibition test in the HS68 cell line. We performed clinical studies for the whitening and skin-wrinkle activity of cream containing acerola extract mixes liposome, was showed that the melanin contents and wrinkle was statistically significant reduction. These results suggest that liposomes containing acerola extract mixture have safe natural material, and skin wrinkle, whitening effects allowing their application in cosmetics as a natural product.