• Title/Summary/Keyword: chemical stability

Search Result 3,499, Processing Time 0.033 seconds

A Study on the Evaluation of Long Term Stability of Brinell Standard Hardness Tester and Automatic Indentation Measurement System and Optimum Test Condition (브리넬 경도 표준 시험기 및 압입자국 자동 측정 장치의 장기 안정도 평가와 최적 시험조건에 관한 연구)

  • Bahng, G.W.;Tak, Nae-Hyung;Hwang, N.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.10-15
    • /
    • 2000
  • Evaluation of long term stability of the Brinell standard hardness tester was carried out to secure its application as a national standard in Brinell hardness. Accuracy and repeatability in load application were tested through evaluating errors in hardness measurement of certified reference blocks. All of those requirements in KS as well as ISO specifications were satisfied by this standard hardness tester. In addition to this, long term stability test of automatic indentation measurement system was carried out. The scattering range was almost the same with its error range. To figure out an optimum test condition for better repeatability and long term stability, the effect of load variation, load application speed and time have been studied using orthogonal array experimental plan. It was found that the best combination is $30{\mu}m/s$ of load application speed and 25 seconds of load application time.

  • PDF

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part I

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane head-groups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study clearly showed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To examine this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various physical conditions (relative humidity, high stress, and contact repetition) were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in highly humid conditions (>90%RH), there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. It obviously proves that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Improvement of Thermal Stability of Electrospun PAN Fibers by Various Additives

  • Lee, Young-Seak;Kim, Min-Il;Im, Ji-Sun;In, Se-Jin
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.200-202
    • /
    • 2008
  • In order to improve the thermal stability of PAN-based electrospun fibers, AP-PER-MEL and $TiO_2$ were added in to the fibers as additives. The polymer composite with uniformly mixed additional agents was obtained. In case of non-treated sample, the fibers were burn off completely with high rate within $620^{\circ}C$. But in case of treated samples (EF-M and EF-MT), it is sure that the thermal stability was improved by studying TGA data and ISO flammability test about 20 and 30%, respectively. A synergy effect of adding two kinds of agents (AP-PER-MEL and $TiO_2$) into PAN-based electrospun fibers was confirmed. Through SEM images, it is confirmed that the fiber shape can be kept even after addition of agents (AP-PER-MEL and $TiO_2$). Finally the thermal stability of fibers was largely developed with keeping the nature of PAN-based fibers effectively.

¹H NMR Study of the Effect of G-T Mismatches on Dynamics and Stability of d(GCGTGCGC)₂ and Its Berenil Complex

  • 허성호;홍석주;이조웅;정채준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1045-1052
    • /
    • 1996
  • The effects of G-T mismatches on thermal stability, the base-pair lifetime and the global structure of a d(GCGTGCGC)2 duplex were studied by using 1H NMR, UV and CD spectroscopy. The existence of G-T mismatches was found to cause a noticeable change in the chemical environment of imino protons associated with significant decrease in the base-pair lifetime at the mismatched site as well as in thermal stability of the duplex itself. The melting transition of d(GCGTGCGC)2 was not cooperative at all at 100 mM or lower concentration of NaCl, but became cooperative at 500 mM or higher NaCl concentration. The melting temperature (Tm) of this duplex was 32℃ at 500 mM concentration of NaCl, which is much lower than that of d(GCGCGCGC)2 at the same NaCl concentration. This suggests that the decrease in stability may be ascribed to the decrease in the base-pair lifetime and the deviation from the normal structure due to the G-T mismatches. Adding berenil to d(GCGTGCGC)2 caused no observable change in the global structure but the large decrease in the base-pair lifetime and the stability of the duplex.

Thermal Stability of Phenylphosphonic Acid Modified Polyurethanes

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.70-80
    • /
    • 2023
  • The effect of phenylphosphonic acid (PPOA) on polyurethane (PU) thermal stability was studied through Fourier transform infrared spectroscopy and Thermogravimetric analysis. To synthesize PPOA-modified PUs (PPOA-PUs), polyether-type diols (Mw=62, 106, 190, 419, 605) were chemically modified with PPOA and then reacted with 4,4'-dicyclohexylmethane diisocyanate (H12MDI) and 4,4-diphenylmethane diisocyanate (MDI). During thermal decomposition in air, the PPOA embedded in the PUs formed intumescent phosphocarbonaceous char. Below 400℃, PPOA-H12MDI-PUs were more unstable, as PPOA decomposed at lower temperatures than phenyl groups and aliphatic ethers. Above 550℃, the thermal stability of PUs followed this order: PPOA-MDI-PUs > PPOA-H12MDI-PUs > MDI-PUs > H12MDI-PUs. At 700℃, unmodified PUs had no residue, while the PPOA-MDI-PU residue was 4.4~23.0 wt.% and the PPOA-H12MDI-PU residue was 1.5~17.5 wt.%. The enhanced thermal stability of PPOA-MDI-PUs at high temperatures can be attributed to the synergetic effect of PPOA and phenyl groups on the formation of phosphocarbonaceous char.

Effects of Maltose on the Stability of Freeze-Dried Liposomes (동결 건조된 리포솜의 안정화에 있어서 말토스의 영향)

  • Kim, Yun-A;Han, Hee-Dong;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.616-622
    • /
    • 2004
  • Liposome powders were prepared by a freeze-drying method for the application to the field of drug carrier. The effect of maltose as a liposome stabilizer was studied on the stability and the drug-loading efficiency of the freeze-dried liposome powders. The particle size of liposomes before and after freeze-drying was determined to evaluate the liposome stability. The drug-loading efficiency was measured by Fluorescence spectrophotometer using calcein as a model drug. When maltose was added after the preparation of the liposomes, the liposomes was stable, compared to the case of maltose addition at the hydration procedure. By the addition of maltose, the liposome was stable for 30 days at $4{\sim}37^{\circ}C$, while the particle size of the liposome without maltose increased with time. The liposome showed relatively high stability when the maltose/lipids molar ratio was 3 and 6.

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.