• Title/Summary/Keyword: chemical resistance test

Search Result 582, Processing Time 0.029 seconds

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives (아크릴 및 에폭시 접착제의 화학적 구조에 따른 유리섬유 복합재료의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Choi, Jin-Yeong;Kwon, Dong-Jun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent) (아토마이징 제강 환원슬래그를 골재로 사용한 폴리머 콘크리트 복합재료의 특성(II) (폴리스티렌 수축저감재 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.380-385
    • /
    • 2014
  • Spherical atomizing reduction steel slag was prepared by atomizing technology using reduction steel slag (ladle furnace slag, LFS) generated from steel industry. In order to develop the mass-recycling technology of atomizing reduction steel slag, polymer concrete composite was prepared using spherical atomizing reduction steel slag instead of fine aggregate (river sand) and coarse aggregate (crushed aggregate), depending on the grain size. Different polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing reduction steel slag in order to investigate the characteristics of polymer concrete composite. Results showed that compressive strengths of polymer concrete specimens decreased with the increase of replacement ratios of atomizing reduction steel slag, but flexural strengths of the specimens showed a maximum strength at the 50% of replacement ratios of atomizing reduction steel slag. It was concluded that addition ratio of polymer binder, which affect greatly on the prime cost of production of polymer concrete, could be reduced by maximum 18.2 vol% because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag. However, further study is required because the mechanical strength of the specimen using atomizing reduction steel slag was greatly reduced in hot water resistance test.

Pathogen Physiology, Epidemiology and Varietal Resistance in White Rot of Apple (사과 흰빛썩음병백부병(白腐病)의 병원균(病原菌) 생리(生理), 포장(圃場)에서의 전염(傳染) 및 품종저항성(品種抵抗性))

  • Cho, Won-Dae;Kim, Choong-Hoe;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.2 s.67
    • /
    • pp.63-70
    • /
    • 1986
  • Severity of incidence of white rot on apple fruit ranged from 5 to 16% and averaged 9% over major apple growing area in 1981. An isolate of Botryosphaeria ribis obtained from rotted apples developed lesions on leaves, branches and fruits of apple, pear, peach and grape in a series of wound inoculation test. B. ribis grew well on both potato sucrose agar and oatmeal agar. The best condition for vegetative growth on these two media was at $25{\sim}30^{\circ}C$ pH 4 and $10{\sim}15%$ sucrose content under light illumination. Rot development on fruit was first observed in the orchard at early August when sugar content in fruit reached 9.0%. Thereafter, number of rotted apples increased as sugar content increased. There was no correlation between the pH of juice of fruit and rot incidence. Infection on fruit began to occur as early as mid-June when young fruits were formed and infections were continued until harvest. When apple fruits were collected at 10-day intervals from the orchard beginning from early June and were wound-inoculated with B. ribis, rot lesion developed regardless of the stage of fruit growth. Incidence of white rot in the orchard was severe on Golden-delicious and Yukou, intermediate on Aoli, Fugi and Indo, and least on Jonathan and Red-delicious.

  • PDF

A Study on the Behavior Characteristics of Large Deep Foundations (대형 깊은 기초의 지지거동 특성에 관한 연구)

  • Park, Choon-Sik;Jung, Kwang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the characteristics of support behavior according to the change of ground condition of the cast-in-place pile and the large Caisson foundation, which are increasingly used as foundations of large structures and bridges. the allowable bearing capacity calculated using the yield load analysis method was analyzed to calculate similar allowable bearing capacity for each method. In addition, the allowable bearing capacity calculated by the ultimate load analysis method was found to have a large difference in bearing capacity for each method. Through this point, it can be usefully used as an empirical formula for evaluating the settlement characteristics of piles in future design and construction. In addition, as a result of examining the ground force distribution during sedimentation of large caissons, the section of the weathered rock layer showed almost constant ground force distribution as ground forces decreased after yield occurred at the base corner. And in the bed rock layer section, the foundation's center was transformed into a ground force in the form of a convex downward due to an increase in the ground resistance of the central part. Using these results, the theory previously presented by Fang (1991) and Kőgler (1936) was proved.

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation (대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성)

  • Park, Sung-Sik;Kim, Seong-Heon;Bae, Do-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.29-42
    • /
    • 2018
  • Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.