• Title/Summary/Keyword: chemical resistance test

Search Result 582, Processing Time 0.031 seconds

Study on the Preparation and Properties of Polyurethane-Acryl Emulsion Resin (폴리우레탄-아크릴 에멀젼 수지 제조 및 물성에 관한 연구)

  • Kim, Hong-Tae;Lee, Myung-Cheon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • In this study, polyurethane-acryl emulsion resins were synthesized from HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), Polyol, 2-HEMA (2-hydroxy ethylmethacrylate), n-BA (n-butyl acrylate) and MMA (methylmethacrylate). The effects of polyol types on the properties of polyurethane-acryl emulsion resin, such as degree of strength and water resistance and on the manufacturing process were investigated. In addition, the results were compared with those of acrylic emulsion. The test results showed that polyester type polyol demonstrated stronger tensile strength and higher water resistance with time than did acrylic emulsion and polyether type polyol.

High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

Assessment of Autoxidative Resistance for Organic Solvent by Pressure Monitoring Test

  • Kito, Hayato;Fujiwara, Shintaro;Kumasaki, Mieko;Miyake, Atsumi
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • In the recycle process of organic solvent, the atmospheric oxygen can cause autoxidation and product peroxide. The time-saving method to evaluate the hazards has been required. In this study, oxygen pressure monitoring experiment was proposed as a new method to evaluate autoxidative resistances of solvents. Some of organic solvents were pressurized by oxygen and kept under isothermal condition. At the same time, the pressure in the vessel tracked. Iodometrical titration, thermal analysis and spectroscopic analysis were performed to measure peroxide concentration, the heat of reaction and chemical bonding change. From the results that THF has larger oxygen consumption rate than CPME, it is considered that autoxidative resistance of THF is lower than that of CPME. This method enables to obtain results in shorter time than other methods. These experimental results were consistent with the previous research with longer test durations [1-2].

A Study on Material Characterization of SMC (SMC의 물성치 평가에 관한 연구)

  • 정진호;한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • SMC(Sheet Molding Compound), a thermoset composite material which consists of unsaturated polyester resin, fiberglass strands, fillers, and various chemical additives for curing agent, has been widely used in fabrication of structural components. The mechanical properties of molded SMS parts are strongly dependent on material flow results during compression molding process, while such flow in molds is affected by material characteristics. For numerical simulation of SMC molding process, estimation of material property of SMC must be accomplished. In this study, flow resistance of SMC was estimated through a simple compression test using a lubricant with grease oil under the constant strain rate condition at various temperatures and the result was compared with other material data available in the literature. The accuracy of the experimentally determined flow resistance was tested by finite element analyses of compression molding of SMC. Simulation results were compared with experimental results under the plane strain condition.

  • PDF

A Study on Pitting Resistance of TiN Film Coated on Inconel 600 by CPP Test in High Temperature NaCl Solution (nconel 600위에 증착된 TiN 박막의 고온 NaCl 수용액에서의 CPP 실험에 의한 핏팅저항성의 연구)

  • 김용일;정한섭;김홍회;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1301-1307
    • /
    • 1995
  • Pitting corrosion of TiN film deposited on Inconel 600 by plasma assisted chemical vapor deposition (PACVD) was investigated. Cyclic potentiodynamic polarization (CPP) tests were conducted in order to determine the pit nucleation potentials, Enp, of the TiN-deposited sample and the bare Inconel 600 in deaerated NaCl solution at 25, 135 and 20$0^{\circ}C$. The effects of the TiN film thickness, the solution temperature and the Cl- concentration on Enp were studied. Enp of the TiN-deposited sample which had the film thickness above 1${\mu}{\textrm}{m}$ were higher than those of the bare Inconel 600 by 300~600mV at all the solution temperatures, implying the pitting resistance improvement of the TiN film. The morphologies of the pits generated after immersion test were examined with a scaning electron microscopy. The higher was the solution temperature, the more corrosion products, mainly composed of Cr and Ni oxides, were formed.

  • PDF

Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment

  • Kim, Kwang-Min;Koh, Seong-Ung;Kim, Kyoo-Young
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.338-343
    • /
    • 2008
  • The electrochemical properties of W-modified austenitic stainless steels containing Ta and La were evaluated in a $H_{3}PO_{4}$ type PEMFC environment. Electrochemical test was conducted in 0.05 M $H_{3}PO_{4}$ solution at $80^{\circ}C$ and electrical property was conducted by contact resistance test. XPS was conducted to analyze the chemical elements consisting of passive film. Addition of La and Ta in W-modified austenitic stainless steel shows not only better corrosion resistance but also better electrical property.

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS (박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구)

  • Kim Hyung-Woo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

A Study on the Chemical Resistance Performance of Injection Type Leakage Repair Materials used in Crack Parts of Concrete Structures under the Contaminated Groundwater Environment (오염된 지하수 환경 하의 콘크리트 구조물 균열부위에 사용되는 주입형 누수보수재료의 화학저항성능 시험평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Kim, Byung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.411-419
    • /
    • 2019
  • Underground concrete structures are constructed under a geographical environment called underground and exposed to various environments that promote deterioration. Among them, groundwater promotes deterioration of underground concrete structures due to contaminated water from the ground. In this study, the chemical resistance performance test evaluation of five different receptors for a total of 15-type leakage repair materials of five series was conducted to determine the chemical stability of the leakage repair material used in the crack area. The results show a general increase and decrease in most chemical receptors, but the biggest increase and decrease was shown in acrylic systems, which were found in sodium chloride and sodium hydroxide, and epoxy was found in hydrochloric acid. The cement system is showing a lot of increase and decrease in sodium chloride. It is expected that the results of these studies will be used as a basis for chemical stabilization in the development of new materials.

Perforrmance Tests of Epoxy-coated Reinforcing Bars : Corrosion Protection Properties (에폭시 도막 철근의 내부식 성능에 관한 실험적 연구)

  • 신영수;홍기섭;최완철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.173-179
    • /
    • 1994
  • Epoxy coated bars protecting reinforcing bars from corrosion and enhancing durability of reinforced concrete structures are tested to evaluate corrosion protection properties. Tests are performed based on the relevant sta.ndards of KS and ASTM, such as chenical resistance, salt water spray, salt crock test and chloride ermeability test. with the main varlable of the coating thlckness. Test results show good chemical protection property and chloride permeability. The results of the salt water spray and the salt crock test show that epoxy coating well protects the reinforcing bars from corrosion, cornparing to the biack bars without epoxy coatmg. However, several spots on the coated bars are rusted at the pinholes or un the bars with coating thickness less thar $200{\mu}M$. Special cautions are required i n the process of blast cleanmg when applying the usion-bonded epoxy coating.