• Title/Summary/Keyword: chemical reinforcement

Search Result 212, Processing Time 0.028 seconds

Reinforcement of Polychloroprene by means of Silia and Glass Fiber (Silica와 Glass Fiber에 의한 Polychloroprene의 보강(補强))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 1988
  • The effect of triazine thiol derivative on the physical properties of silica-polychloroprene(CR) composites and glass fiber(MGF)-CR composites was investigated. Optimum cure time of the MGF composites filled with 2-dibuthylamino-4, 6-dithiol-s-triazine(DBT) was the fastest one, while maximum torque was the best in case of the silica composites filled with s-triazine-2,4,6-trithiol(TAT) on the Oscillating Disk Rheometer(ODR) test. Stress-strain curves of the composites showed that the physical properties such as 100% modulus, 300% modulus, tensile strength of the silica composites filled with DBT was very satisfactory and the silica composites filled with TAT was higher density of crosslinking than other crosslinked elastomer. In aging properties, elastomer filled DBT and TAT were progress post-curing reaction with increasing of aging time and it have been improved the tensile strength and crosslinking density.

  • PDF

Finite Element Analysis of the Effect of Chloride Ion on the Coastal Concrete Structure with Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 해양콘크리트 구조물의 염분침투해석)

  • 여경윤;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.945-950
    • /
    • 2000
  • Coastal concrete structure is harmed by physical and chemical action of sea water, impact load, meteorological effect and etc. especially, premature reinforcement corrosion in concrete exposed to sea water has an important problem. In this study, the behavior of chloride ions penetrated through the coastal concrete structure with ordinary portland cement or ground granulated blast furnace slag(GGBFS) was modeled. The physicochemical processes including the diffusion of chloride and the chemical reaction of chloride ion with calcium silicate hydrate and the other constituents of hardened cement paste such as$C_3A$ and $C_4AF$were analyzed by using the Finite Element Method. From analysis result, the corrosion of concrete structure with GGBFS begins 1.69~1.76 times later than that of concrete structure with ordinary portland cement.

Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과)

  • Park, Chan-Gi;Won, Jong-Pil;Yoo, Jung-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.811-819
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP re-bar is pone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Other potentially FRP re-bar aggressive environments are sea water, acid solution and fresh water/moisture. In this study long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP-, GFRP re-bar and one type of AFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile, compressive and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite (폴리아미드/유리섬유 복합재료의 물성에 대한 연속반응 아크릴산 변성 폴리에틸렌 왁스의 영향)

  • Kim, Hyochul;Kim, Hyung-Il;Han, Won-Hee;Hong, Min-Hyuk;Lee, Hyunwoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.

A Study on Performance Evaluation of New Asphalt Surface Reinforcement Method (ASRM) for Preventive Maintenance (예방적 유지보수를 위한 아스팔트 표면강화공법의 실내 성능 평가)

  • Kim, Kyungnam;Jo, Shin Haeng;Kim, Nakseok;Lee, Doosung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.311-317
    • /
    • 2018
  • The new asphalt surface reinforcement method (ASRM) is one of the preventive maintenance methods in asphalt concrete pavements. The adhesion performance of new ASRM satisfied the standard of non-slip pavement and bridge waterproofing materials. As a results of durability tests (as wheel load, rolling bottle and UV resistance test), the new ASRM showed sufficient resistance to traffic and environmental loads. The waterproof and chemical resistance tests of new ASRM were conducted to evaluate whether the pavement could be protected from water and chemicals and the performances of new ASRM were satisfactory. Furthermore, the new ASRM demonstrated some rejuvenation effects due to its toughness increases in recycled asphalt concrete mixture by 5% compared to the conventional hot mix asphalt mixture using reclaimed asphalt pavement. In conclusion, the new ASRM was evaluated to protect the asphalt concrete pavement and increase the lifetime.

Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System (가황조건별 배합고무의 가교밀도와 고무보강성에 관한 연구)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.315-323
    • /
    • 1998
  • The purpose of this study was to investigate the crosslinking density and reinforcement of rubber compounds with various carbon black loadings, cure systems and cure temperatures. Bound rubber content increased with volume fraction of carbon black in rubber compounds, but total crosslinking density decreased with increasing the bound rubber content. Rate constant of cure reaction was changed significantly by cure system and cure temperature, especially it showed strong dependence on the cure temperature. High activation energys of cure reaction were shown in the rubber compound with high loading of carbon black under EC system and in the rubber compound with low loading of carbon black under CC system. High total crosslinking density of vulcanized compounds appeared in the rubber compound with low loading of carbon black and CC system among cure systems. Typical change of total crosslinking density by EC system was not shown. The highest elastic constant by Mooney-Rivlin equation was shown in the rubber compound with low loading of carbon black and SEC system. Modulus increased as increasing the loading of carbon black in the rubber compounds and showed the order of SEC, CC, and EC system for cure system.

  • PDF

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF