• Title/Summary/Keyword: chemical process industries

Search Result 289, Processing Time 0.029 seconds

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application (자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성)

  • Kim, Jin-Ho;Lee, In-Jun;Noh, Seung-Man;Kang, Choong-Yeol;Nam, Joon-Hyun;Jung, Hyun-Wook;Park, Jong-Myung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2011
  • 3-Roll coating process as a key application technology for manufacturing automotive pre-painted metal-sheets has been studied. The 3-Roll coating system for this study consists of pick-up roll for picking up and distributing coating liquid from the reservoir, metering roll to properly meter coating liquid in metering gap regime, and applicator roll for directly transferring liquid into metal-sheet surface. Flow dynamics and operable coating windows of a polymeric paint (primer) with shear-thinning rheological property have been correlated with processing parameters such as speed ratio and metering gap between pick-up and metering rolls. In the uniform coating regime, dry coating thickness increased with increasing metering gap or decreasing speed ratio. Ribbing and cascade instabilities were observed in low speed and high speed ratio conditions, respectively. It is revealed that lower speed ratio makes severity and wavelength of the ribbing increase, aggravating flow instability in coating systems.

Characteristics and Modeling Analysis of Entrained Flow Gasifiers (분류층 가스화기 특징 및 공정모사 분석)

  • Yoo, Jeongseok;Kim, Youseok;Paek, Minsu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.20-28
    • /
    • 2013
  • The gasification process has developed to convert coal into the more useful energy and material since decades. Despite the numberous design of ones, entrained flow gasifier of the major companies has had an advantage on the market. Because it has a merit of full-scale and high performance plant. In this paper, the gasification technologies of GE energy, Phillips, Siemens and Shell have been reviewed to compare their characteristics and a high performance gasification process was suggested. And the simulation model of gasifiers using Aspen Plus offered the quantitative comparison data for difference designs. The simulation results revealed the poor performance of the slurry feed than dry design. The corresponding cold gas efficiency of 77% is much lower than the 80.3% for the dry feed cases. The exergy analysis of the difference syngas quenching system showed that chemical quenching is superior to another. The results of analysis recommend the two stage gasifier with dry multi-feeder as the energy effective design.

Study for Synthesis and Properties of Polyurethane Based on Polyester Polyol with Varying Hydroxyl Values for Automotive Pre-painted Metal Sheet Applications (자동차 선도장 강판용 폴리에스테르 폴리올 기반 폴리우레탄의 합성과 물성에 대한 연구)

  • Kang, Choong Yeol;Lee, Jae Young;Noh, Seung Man;Nam, Joon Hyun;Park, Jong Myung;Jung, Hyun Wook;Yu, Sang Soo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • The roll coating process is well-known for completely replacement coating system with an existing wet paint process for automotive which has low productivity and is not environment-friendly process. It is very important to evaluate the curing behavior, corrosion resistance and processing property as well as rheological behavior in order to realize a film flexibility and hardness simultaneously. In this study, we have synthesized the polyester resin modified with hydroxyl values and molecular weight to apply the pre-painted system, and then evaluated the curing behavior, deep drawing, tensile strength and rheological properties. It was observed that N-0375-40 of 40 (mg KOH/mol) hydroxyl values showed the most suitable for flexibility, film hardness, and curing behavior.

Construction of an Exposure Matrix Using a Risk Assessment of Industries and Processes Involving Dichloromethane (작업환경측정 자료를 활용한 Dichloromethane 노출 매트릭스 구축에 대한 연구)

  • Lee, Jae-Hwan;Park, Dong-Uk;Hong, Sung-Chul;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.391-401
    • /
    • 2010
  • A reduction in risk of occupational exposure to chemical hazards within the workplace has been the focus of attention both through industry initiatives and legislation. The aims of this study were to develop an exposure matrix by industry and process, and to apply this matrix to control the risk of occupational exposure to Dichloromethane (DCM). The exposure matrix is a tool to convert information on industry and process into information on occupational risk. The exposure matrix comprised industries and processes involving DCM, based on an exposure database provided by KOSHA (the Korean Occupational Safety and Health Agency), which was gathered from a workplace hazards evaluation program in Korea. The risk assessment of the exposure matrix was performed using Hallmark risk assessment tool. The results of the risk assessment were indicated by a Danger Value (DV) calculated from the combination of hazard rating (HR), duration of use rating (DUR), and risk probability rating (RPR) of exposure to the chemical, and were divided into four control bands which were related to control measures. The applicability of the risk assessment of the exposure matrix was evaluated by a field study, and survey of the employees of the exposure matrix groups. Among 45 industries examined, this study found that greater attention should be paid to two industries: the manufacture of other optical instruments and photographic equipment, and the manufacture of printing ink, and to one process among 47 examined, the packing process in the manufacture of printing ink, because these were regarded as carrying the highest risk. This tool of a risk assessment for the exposure matrix can be applied as a general exposure information system for hazard control, risk quantification, setting the occupational exposure limit, and hazard surveillance. The exposure matrix includes workforce data, and it provides information on the numbers of exposed workers in Korea by agent, occupation, and level of exposure and risk.

Improved DMC for the integrating process (적분 공정 제어를 위한 향상된 DMC)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

Brief Review on the Processes for RNA-Platform Vaccine Production (RNA 플랫폼 백신 제조공정 고찰 연구)

  • Roh, Hyungmin;Oh, Kyeongseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.179-186
    • /
    • 2021
  • Among the Covid-19 vaccine platforms, mRNA-platform vaccines are summarized qualitatively in this paper. Manufacturing mRNA vaccines consist of serial processes; the preparation process of DNA template, the transcription of mRNA, nanoemulsion process, and the fill and finish unit combined with formulation stages. It is noticeable that major players are collaborated for producing mRNA vaccines. In particular, the nanoemulsion process is recognized to the key process requiring formulated lipid materials to protect modified mRNA until they arrive in intracellular cytosol. It is known that the nanoemulsion process adapts well-designed microfluidic devices. We expect that the nanoemulsion process will stimulate pharmaceutical industries to develop diverse applications.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.

Selection of coagulant using jar test and analytic hierarchy process: A case study of Mazandaran textile wastewater

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Motamedi, Vahid;Davoodi, Mostafa
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Textile factories are one of the industries which its wastewater treatment is a challenging issue, especially in developing countries and a conventional treatment cannot treat all its pollutants properly. Using chemical coagulants is a technique for physical and chemical primary treatment of the wastewater. We applied jar test for selection of suitable coagulant among the five coagulants including alum, calcium hydroxide, ferrous sulfate, ferrous chloride and barium chloride for the effluent of wastewater in Mazandran textile factory located in Mazandran Province, Iran. In addition, jar test, we also used analytic hierarchy process (AHP) method considering criteria which included coagulation cost, sensitivity to pH change, the amount of sludge generation and side effects for coagulation. The results of the jar test indicated that calcium hydroxide was proper among the coagulants which it removed 92.9% total suspended solid (TSS), 70% dye and 30% chemical oxygen demand. The AHP analysis presented that calcium hydroxide is more suitable than other coagulants considering five criteria.