• 제목/요약/키워드: chemical nutrient

검색결과 864건 처리시간 0.02초

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase

  • Yubin Jeon;HyeJi Jin;Youjung Kong;Haeng-Geun Cha;Byung Wook Lee;Kyungjae Yu;Byongson Yi;Hee Taek Kim;Jeong Chan Joo;Yung-Hun Yang;Jongbok Lee;Sang-Kyu Jung;See-Hyoung Park;Kyungmoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1076-1083
    • /
    • 2023
  • Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.

인삼 논재배에서 황증이 발생한 토양과 식물체의 무기성분 함량 특성 (Soil Chemical Property and Leaf Mineral Nutrient of Ginseng Cultivated in Paddy Field Occurring Leaf Discoloration)

  • 이성우;박기춘;이승호;박진면;장인복;김기홍
    • 한국약용작물학회지
    • /
    • 제21권4호
    • /
    • pp.289-295
    • /
    • 2013
  • This study was carried out to investigate the cause of leaf discoloration occurring frequently in paddy cultivation. Chemical property of soil and inorganic nutrient component of leaf were analyzed on abnormal fields of 7 regions where leaf discoloration occurred severely and normal fields of 7 regions among ginseng garden. The pH of abnormal fields was strong acidic condition (pH 5.51) compare to normal fields of slightly acid condition (pH 6.42). Calcium and magnesium content in abnormal fields were lower distinctly than that of normal fields, while EC, organic matter, phosphate, and potassium content showed not distinct difference between abnormal and normal fields. Whereas calcium and magnesium content were distinctly high in normal fields, both of potassium and iron content of ginseng leaf were distinctly high in abnormal fields. In particular, iron content of abnormal fields was more 1.94 times in soil, and 3.03 times in leaf than that of normal fields. In soil chemical property, there were significant negative correlation between leaf discoloration ratio and soil pH, and there were also significant positive correlation between leaf discoloration ratio and iron content. In ginseng leaf, there were highly significant negative correlation between leaf discoloration ratio and calcium content, and there were also highly significant positive correlation between leaf discoloration ratio and iron content.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Microalgae Membrane Bioreactor (MMBR) 공정에서 하수의 영양염류 제거와 바이오매스 생산성 효율 (Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process)

  • 최희정
    • 한국물환경학회지
    • /
    • 제30권4호
    • /
    • pp.386-393
    • /
    • 2014
  • The aim of this study was to investigate the nutrient removal and biomass productivity in the wastewater using MMBR (Microalgae Membrane Bioreactor). MMBR process was combined OPPBR (Optical Panel Photobioreactor) and MBR (Membrane bioreactor). The OPPBR and MBR were operated 3 days and 9h HRT (Hydraulic retention time), respectively, using microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 0.498 g/L/d with light transmittance of 92% at a 305 mm depth in the OPPBR was achieved. The total consumption of BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) in the MMBR were found to be 97.56% and 96.06%, respectively. Additionally, the removal of TN, $NO_3-N$, TP and $PO_4-P$ were 94.94%, 91.04%, 99.54% and 93.06% in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD and nutrient removal when compared to the separate OPPBR or MBR process. The MMBR process was effective for nutrient removal and biomass productivity and can be applied to treat wastewater in sewage treatment plant.

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.971-978
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

Nutrient Balances and Soil Properties Affected by Application of Soybean and Barley Residues

  • Oh, Taek-Keun;Sonn, Yeon-Kyu;Lee, Dong Sung;Kim, Myung-Sook;Kim, Seok-Cheol;Yun, Hong Bae;Lee, Deog-Bae;Lee, Chang-Hoon
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.120-126
    • /
    • 2014
  • An accurate analysis of nutrient balance in different cropping systems is necessary for improving soil fertilities, causing higher crop yields and quality. This study was carried out to investigate the nutrient balance, changes in soil properties, and their effects on crop yield in long-term field cultivation under mono- and rotation-cropping systems (MCS and RCS, respectively). The analytical results of the soil properties showed that the application of mineral fertilizers alone in the MCS leads the reduction of soil CEC, exchangeable Ca, and microbial biomass C and N. Compared with the MCS of soybean, the RCS of soybean and barley significantly improved the soil properties, which increased crop yield. It might be due to the barley residue added to the RCS soil. Mean nutrient balances for 4 years were -55.9 kg N, +34.7 kg $P_2O_5$, and -0.3 kg $K_2O$ $ha^{-1}$ for the MCS and +19.7 kg N, +107.4 kg $P_2O_5$, and -48.6 kg $K_2O$ $ha^{-1}$ for the RCS, respectively. These nutrient imbalances mean that conventional fertilizer recommendations were inadequate for maintaining soil nutrient balance. From these results, we can conclude that the crop rotation may change comprehensive physical, chemical, and biological soil properties. These changes could affect the nutrient balance and then the crop yield.

유기질비료와 화학비료의 시용수준에 따른 시설수박 생육과 토양화학성의 변화 (Application Effect of Organic Fertilizer and Chemical Fertilizer on the Watermelon Growth and Soil Chemical Properties in Greenhouse)

  • 엄미정;노재종;전형권;권성환;송영주
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 시설수박 재배시 안정적 수량확보와 과다시비에 따른 환경오염을 방지하기 위해 유기질비료의 적정 시비기준을 마련하고자 유기질비료인 혼합유박과 혼합유기질비료를 이용하여 시험을 수행하였다. 시험에 사용한 유기질비료는 혼합유박이 질소 3.9%, 인산 2.0%, 가리 0.9%, 혼합유기질비료는 질소 4.1%, 인산 2.1%, 가리 1.1%로 수박의 엽면적은 2가지 비종 모두에서 질소기준 0.5배량과 0.3배량 수준의 처리구가 화학비료 단용처리구와 비슷한 수준을 보였으며, 엽중 양분흡수량 및 수박의 과중과 당도는 가장 크게 나타났다. 수확 후 시험토양은 2가지 비종 모두에서 밑거름으로 50%와 30% 수준으로 시용하고, 웃거름으로 화학비료를 이용한 경우가 EC, 유효인산, 치환성 칼리 함량이 시험전에 비해 비슷하거나 낮아져 다른 처리에 비하여 시설하우스 토양의 염류집적 우려가 적었다. 이에 따라 시설수박 재배시 혼합유박이나 혼합유기질 비료의 적정시비량은 토양검정 질소시비량의 0.3~0.5배량 수준을 정식전 밑거름으로 사용하고, 나머지 양은 화학비료를 웃거름으로 관비를 통해 공급하는 것이 3~10%의 수량 증가 효과가 있었다.