• 제목/요약/키워드: chemical kinetic mechanism

검색결과 433건 처리시간 0.025초

Mechanistic Studies of the Solvolyses of Cyclohexanesulfonyl Chloride

  • Kang, Suk Jin;Koh, Han Joong
    • 대한화학회지
    • /
    • 제63권4호
    • /
    • pp.233-236
    • /
    • 2019
  • In this study, the solvolysis of cyclohexanesulfonyl chloride (1) was studied by kinetics in ethanol-water, methanol-water, acetone-water, and 2,2,2-trifluoroethanol (TFE)-water binary solvent systems. The rate constants were applied to the extended Grunwald-Winstein equation, to obtain the values of m = 0.41 and l = 0.81. These values suggested $S_N2$ mechanism in which bond formation is more important than bond breaking in the transition state (TS). Relatively small activation enthalpy values (11.6 to $14.8kcal{\cdot}mol^{-1}$), the large negative activation entropy values (-29.7 to $-38.7cal{\cdot}mol^{-1}{\cdot}K^{-1}$) and the solvent kinetic isotope effects (SKIE, 2.29, 2.30), the solvolyses of the cyclohexanesulfonyl chloride (1) proceeds via the $S_N2$ mechanism.

산 수용액내에서 [Co(en)2(CO3)]+의 아쿠아 반응속도와 반응메커니즘 (Kinetics and Mechanism for aquation of [Co(en)2(CO3)]+ in [H+] aqueous solution)

  • 이철재;김동엽
    • 한국산업융합학회 논문집
    • /
    • 제8권3호
    • /
    • pp.155-160
    • /
    • 2005
  • Kinetic studies were carried out for aquation of carbonatobis(ethylenediamine)cobalt(III) complexes in [H+] aqueous solution by UV/VIS-spectrophotometry. The rate law that in deduced from rate data is $rate=k_H{^+}[H^+]^{1.4}$ {$[Co(en)_2(CO_3)]^+$}1.0 where $k_H{^+}$ is the rate constant considering acidic catalyst, $H^+$ ion whose value is $0.241l{\cdot}mol^{-1}{\cdot}sec^{-1}$. The values of activation parameters Ea, ${\Delta}H^{\ast}$ and ${\Delta}S^{\ast}$ were $15.33Kcal{\cdot}mol^{-1}$, $14.52Kcal{\cdot}mol^{-1}$ and -57.49 e.u. respectively. On the basis of kinetic data and the observed activation parameters, we have proposed the mechanism that proceeds with two step protonations. The rate equation derived from the proposed mechanism has been in agreement with the observed rate equation. It has been seen that our modified mechanism for Harris's proton freequilibrium one prefer to the his concerted mechanism, and more the last product substitute $H_2O$ for $OH^-$ the Harris's mechanism in the acidity range 2 < pH < 5.

  • PDF

Kinetic Studies of the Solvolyses of 2,2,2-Trichloro-1,1-Dimethylethyl Chloroformate

  • Koh, Han-Joong;Kang, Suk-Jin;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.835-839
    • /
    • 2010
  • The rate constants of solvolyses of 2,2,2-trichloro-1,1-dimethylethyl chloroformate ($\underline{I}$) in 33 solvents can be well correlated using the extended Grunwald-Winstein equation, with incorporation of the $N_T$ solvent nucleophilicity scale and the $Y_{Cl}$ solvent ionizing scale, with sensitivities towards changes in the scale having values of $1.42\;{\pm}\;0.09$ for l and $0.39\;{\pm}\;0.05$ for m, respectively. The activation enthalpies are ${\Delta}H^{\neq}\;=\;12.3$ to $14.5\;kcal{\cdot}mol^{-1}$ and the activation entropies are -28.2 to $-35.5\;cal{\cdot}mol^{-1}{\cdot}K^{-1}$, consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect of 2.14 in MeOH/MeOD is in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Kinetics and Mechanism of Mutant O-acetylserine Sulfhydrylase-A (C43S) from Salmonella typhimurium LT-2

  • Yoon, Moon-Young
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.210-214
    • /
    • 1996
  • The pH dependence of the kinetic parameters of mutant O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium LT-2 has been determined in order to obtain information on the chemical mechanism. The initial velocity pattern obtained by varying the concentrations of OAS at several fixed concentrations of TNB, shows an intersection on the left of the ordinate at pH 7.0, indicating that the kinetic mechanism is a sequential mechanism in which substrate inhibition by OAS is observed while the wild type enzyme showed a ping pong mechanism. The values of $V/E_t$, $V/K_{OAS}E_{t}$ and $V/K_{TNB}E_{t}$ decreased by about 68%, 14% and 16% as compared with the wild type enzyme. The $V/K_{OAS}E_{t}$ is a pK of 6.5 on the acid side of the pH profile, and the $V/K_{TNB}$ is pH independent. As compared with the wild type enzyme, the pKs in the V/K profiles are shifted, reflecting that binding of the cofactor in free E:OAS is less asymmetric.

  • PDF

4-Chloro-2-((E)-(Isopropylimino)methyl)phenol 코발트(II) 착물에 대한 결정 구조 및 열분해 연구 (Crystal Structure and Thermal Decomposition Studies on Cobalt (II) Complex of 4-Chloro-2-((E)-(Isopropylimino)methyl)phenol)

  • Pu, Xiao-Hua
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.341-345
    • /
    • 2011
  • Schiff base 코발트(II) 착물, bis[4-chloro-2-((E)-(isopropylimino) methyl) phenol]cobalt(II), 을 합성하고 단결정 X-ray 회절 분석을 하였다. 코발트 (ii) 합성물의 현상학적, 속도론적 및 기계적 특성은 TG/DTG법으로 연구하였다. 실험 데이터에 기초하여, 활성화 에너지, 지수 앞자리인자, 활성화 엔트로피와 같은 속도론적 파라미터를 계산하였으며, 가장 가능성 있는 메카니즘 함수로는 $g({\alpha})={\alpha}^2$이 추정되었다. 따라서, 모든 분해 단계에서 속도 조절 단계는 1차원 확산 과정(Parabolic model) 이다.

Kinetics and Mechanism of Aminolysis of Phenyl Benzoates in Acetonitrile

  • 고한중;이호찬;이해황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.839-844
    • /
    • 1995
  • The kinetics and mechanism of the reactions of phenyl benzoates with benzylamines and pyrrolidine are investigated in acetonitrile. The variations of ρX (ρXY>0) and ρZ (ρYZ<0) with respect to the substituent in the substrate (σY) indicate that the reactions proceed through a tetrahedral intermediate, T±, with its breakdown in the rate determining step. The large magnitudes of ρZ, ρXY and ρYZ as well as the effects of secondary kinetic isotope effects involving deuterated nucleophiles are also in line with the proposed mechanism.

Analysis of Kinetic Data of Pectinases with Substrate Inhibition

  • Gummadi, Sathyanarayana-N.;Panda, T.
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.332-337
    • /
    • 2003
  • Enzyme kinetics data play a vital role in the design of reactors and control of processes. In the present study, kinetic studies on pectinases were carried out. Partially purified polymethylgalacturonase (PMG) and polygalacturonase (PG) were the two pectinases studied. The plot of initial rate vs. initial substrate concentration did not follow the conventional Michaelis-Menten kinetics, but substrate inhibition was observed. For PMG, maximum rate was attained at an initial pectin concentration of 3 g/l, whereas maximum rate was attained when the initial substrate concentration of 2.5 g/l of polygalacturonic acid for PG I and PG II. The kinetic data were fitted to five different kinetic models to explain the substrate inhibition effect. Among the five models tested, the combined mechanism of protective diffusion limitation of both high and inhibitory substrate concentrations (semi-empirical model) explained the inhibition data with 96-99% confidence interval.

$H_2/HCl/Air$ 예혼합 화염의 질소산화물 생성에서 염화수소의 영향 (The Effect of Hydrogen Chloride on the $NO_x$ Production in $H_2/HCl/Air$ Premixed Flame)

  • 권영석;이기용
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.28-34
    • /
    • 2004
  • Numerical simulations of freely propagating flames burning $H_2/HCl/Air$ Air mixtures were performed at atmospheric pressure in order to understand the effect of hydrogen chloride on flame structures. The chemical and physical effects of hydrogen chloride on flame structures were observed. A chemical kinetic mechanism was developed, which involved 26 gas-phase species and 198 forward elementary reactions. Under several equivalence ratios the flame speeds were calculated and compared with those obtained from the experiments, the results of which were in good agreement. As hydrogen chloride as additive was added into $H_2/Air$ flame, the flame speed, radical concentration and NO production rate were decreased. The chemical effect of hydrogen chloride caused the reduction of radical concentration, and then the decrease of the net rate of NO production. It was found that the influence in the reduction of $EI_{NO}$ with the addition of hydrogen chloride was attributed more due to the chemical effect than the physical effect.

  • PDF

Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2707-2710
    • /
    • 2012
  • The nucleophilic substitution reactions of O-ethyl phenyl phosphonochloridothioate with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from a secondary inverse DKIE ($k_H/k_D$ = 0.93) to a primary normal DKIE ($k_H/k_D$ = 1.28) as the substituent of nucleophile (X) changes from electron-donating to electron-withdrawing. These can be rationalized by the gradual transition state (TS) variation from a backside to frontside attack. A concerted $S_N2$ mechanism is proposed. A trigonal bipyramidal TS is proposed for a backside attack while a hydrogen-bonded, four-center-type TS is proposed for a frontside attack.