DOI QR코드

DOI QR Code

Mechanistic Studies of the Solvolyses of Cyclohexanesulfonyl Chloride

  • Kang, Suk Jin (Department of Science Education, Jeonju National University of Education) ;
  • Koh, Han Joong (Department of Science Education, Jeonju National University of Education)
  • Received : 2019.03.15
  • Accepted : 2019.04.03
  • Published : 2019.08.20

Abstract

In this study, the solvolysis of cyclohexanesulfonyl chloride (1) was studied by kinetics in ethanol-water, methanol-water, acetone-water, and 2,2,2-trifluoroethanol (TFE)-water binary solvent systems. The rate constants were applied to the extended Grunwald-Winstein equation, to obtain the values of m = 0.41 and l = 0.81. These values suggested $S_N2$ mechanism in which bond formation is more important than bond breaking in the transition state (TS). Relatively small activation enthalpy values (11.6 to $14.8kcal{\cdot}mol^{-1}$), the large negative activation entropy values (-29.7 to $-38.7cal{\cdot}mol^{-1}{\cdot}K^{-1}$) and the solvent kinetic isotope effects (SKIE, 2.29, 2.30), the solvolyses of the cyclohexanesulfonyl chloride (1) proceeds via the $S_N2$ mechanism.

Keywords

JCGMDC_2019_v63n4_233_f0001.png 이미지

Scheme 1. Reaction pathways for the solvolysis of benzenesulfonyl chloride.

JCGMDC_2019_v63n4_233_f0002.png 이미지

Figure 1. Plot of log (k/ko) for solvolyses cyclohexanesulfonyl chloride (1) in 31 solvents at 55.0 ℃ against YCl.

JCGMDC_2019_v63n4_233_f0003.png 이미지

Scheme 2. Push-pull reaction.

JCGMDC_2019_v63n4_233_f0004.png 이미지

Figure 2. Plot of log (k/ko) for solvolyses of cyclohexanesulfonyl chloride (1) in 31 solvents at 55.0 ℃ against (0.81NT + 0.41YCl).

JCGMDC_2019_v63n4_233_f0005.png 이미지

Scheme 3. Solvent kinetic isotope effect.

Table 1. Rate constants for the solvolyses of 1a in binary solvent mixtures at 55.0 ℃, and the NT and the YCl values for the solvents

JCGMDC_2019_v63n4_233_t0001.png 이미지

Table 2. Extended Grunwald-Winstein correlation of the kinetics of solvolytic displacement of chloride

JCGMDC_2019_v63n4_233_t0002.png 이미지

Table 3. Rate constants and activation parameters for the solvolyses of 1a at various temperatures

JCGMDC_2019_v63n4_233_t0003.png 이미지

Table 4. Solvent kinetic isotope effects (SKIEs) for the solvolyses of 1 at 55.0 ℃.

JCGMDC_2019_v63n4_233_t0004.png 이미지

References

  1. (a) Rogne, O. J. Chem. Soc. B 1968, 1294. https://doi.org/10.1039/J29680001294
  2. (b) Kim, W. K.; Lee, I. J. Korean Chem. Soc. 1974, 18, 8.
  3. (c) Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Milynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  4. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc., Perkin Trans. 2 1972, 268.
  5. Koo, I. S.; Kwon, E. J.; Choi, H. J.; Yang, K. Y.; Park, J. K.; Lee, J. P.; Lee, I.; Bentley, T. W. Bull. Korean Chem. Soc. 2007, 28, 12.
  6. Kevill, D. N.; Ryu, J. H.; Neidermeyer, M. A.; Koyoshi, F.; D'Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  7. (a) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  8. (b) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  9. Bentley, T. W.; Dau-Schmidt, J. P.; Llewellyn, G.; Mayr, H. J. Org. Chem. 1992, 57, 2387. https://doi.org/10.1021/jo00034a035
  10. (a) Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1995, 973.
  11. (b) Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 257.
  12. (c) Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997, 62, 7869. https://doi.org/10.1021/jo970657b
  13. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 1897. https://doi.org/10.5012/bkcs.2011.32.6.1897
  14. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 3799. https://doi.org/10.5012/bkcs.2011.32.10.3799
  15. Kevill, D. N.; Ryu, J. H.; Neidermeyer, M. A.; Koyoshi, F.; D'Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  16. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2014, 35, 2285. https://doi.org/10.5012/bkcs.2014.35.8.2285
  17. D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kevill, D. N. Int. J. Mol. Sci. 2008, 9, 914. https://doi.org/10.3390/ijms9050914
  18. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2012, 33, 4117. https://doi.org/10.5012/bkcs.2012.33.12.4117
  19. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2015, 36, 2429. https://doi.org/10.1002/bkcs.10465
  20. Harris, J. M.; Clark, D. C.; Becker, A.; Fagan, J. F. J. Am. Chem. Soc. 1974, 96, 4478. https://doi.org/10.1021/ja00821a021
  21. Bentley, T. W.; Ryu, Z. H. J. Chem. Soc. Perkin. J. Chem. Soc. Perkin Trans. 2 1994, 761.
  22. Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7658. https://doi.org/10.1021/ja00440a036
  23. Robertson, R. E. Prog. Phys. Org. Chem. 1967, 4, 213.