• Title/Summary/Keyword: chemical immobilization

Search Result 338, Processing Time 0.025 seconds

Biodevice Technology (바이오소자 기술)

  • Choi, Jeong-Woo;Lee, Bum-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Biodevices composed of biomolecular layer by mimicking the natural functions of cells and the interaction mechanisms of the constituted biomolecules have been developed in various industrial fields such as medical diagnosis, drug screening, electronic device, bioprocess, and environmental pollution detection. To construct biodevices such as bioelectronic devices (biomolecular diode, bio-information storage device and bioelectroluminescence device), protein chip, DNA chip, and cell chip, biomolecules including DNA, protein, and cells have been used. Fusion technology consisting of immobilization technology of biomolecules, micro/nano-scale patterning, detection technology, and MEMs technology has been used to construct the biodevices. Recently, nanotechnology has been applied to construct nano-biodevices. In this paper, the current technology status of biodevice including its fabrication technology and applications is described and the future development direction is proposed.

Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II) (Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.854-860
    • /
    • 2017
  • PSf/D2EHPA/CNTs beads were prepared by immobilizing extractant di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and adsorbent carbon nanotubes (CNTs) on polysulfone (PSf), and the adsorption characteristics of Sr(II) on the beads were studied. The morphological characteristics of the prepared PSf/D2EHPA/CNTs beads were observed by scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectrometer (FTIR). The equilibrium time for the removal of Sr(II) by PSf/D2EHPA/CNTs beads was 60 min. The experimental kinetic data followed pseudo-second-order model more than pseudo-first-order kinetics model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was 4.75 mg/g. The removal efficiencies of Sr (II) by PSf/D2EHPA/CNTs beads were improved 2.5 times by adding the adsorbent CNTs more than by using only the extractant D2EHPA.

Determination of Glucose Using Enzyme Immobilized Membrane (효소 고정화 막을 이용한 Glucose의 정량)

  • Kim, Im Ok;Kwak, Kyeong Do;Ha, Youn Shick;Kwon, Hyo Shik;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.264-270
    • /
    • 1999
  • Enzyme electrodes for amperometric measurement of glucose were prepared by immobilization of glucose oxidase on an Immobilon-AV Affinity membrane and attachement to a Pt electrodes. The electrochemical oxidation of Hz02 was monitored at +0.8V vs. Ag/AgCl. Response was linear from 0.2 mM to 20mM. The detection limit was 10m3 mM. Response time, the optimum pH and life time of enzyme immobilized membrane was 12 seconds, pH 5.5(CH3COONaJCH3COOH) and about 27 days, respectively. When the enzyme electrode was applied for the determinaion of glucose with amperometric method, other physiolosical materials have not interfered. Also, we compared the result with that from AOAC(Association of Offical Analytical Chemists) method, measuring the glucose in sweet potato. The relative error was 0.1%.

  • PDF

Quantitative Assay of Recombinant Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor (Surface plasmon resonance 바이오센서를 이용한 재조합 B형 간염 표면항원의 정량분석)

  • Lee, E. K.;Ahn, S. J.;Yoo, C. H.;Ryu, K.;Jeon, J. Y.;Lee, H. I.;Choi, S. C.;Lee, Y. S.
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • We performed a basic experiment for rapid, on-line, real-time measurement of HBsAg by using a surface plasmon resonance biosensor to quantify the recognition and interaction of biomolecules. We immobilized the anti-HBsAg polyclonal antibody to the dextran layer on a CM5 chip surface which was pre-activated by N-hydroxysuccinimide for amine coupling. The binding of the HBsAg to the immobilized antibody was measured by the mass increase detected by the change in the SPR signal. The binding characteristics between HBsAg and its antibody followed typical monolayer adsorption isotherm. When the entire immobilized antibody was interacted, there was no additional, non-specific binding observed, which suggested the biointeraction was very specific as expected and independent of the ligand density. No significant steric hindrance was observed at 17.6 nm/$mm^2$ immobilization density. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the chip surface was linear up to ca. $40\mu\textrm{g}$/mL, which is much wider than that of the ELISA method. It appeared the antigen-antibody binding was increased as the immobilized ligand density increased, but verification is warranted. This study showed the potential of this biosensor-based method as a rapid, simple, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification replacing the current ELISA method.

Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group (실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향)

  • Lee, Hye Rin;Kim, Moon Il;Hong, Sang Eun;Choi, Jaeyeong;Kim, Young Min;Yoon, Kuk Ro;Lee, Seungho;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.105-113
    • /
    • 2016
  • The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.

Urea Conversion via Enzymes Immobilized on Magnetic Microparticles (자성 미세입자에 고정된 효소를 통한 요소 전환)

  • Yeseul Park;Jieun Kwon;Seungjun Jung;Hyukjin Cho;Gounhanul Shin;Gangik Cho;Jin-Won Park;Kyung-Hyuk Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.407-411
    • /
    • 2023
  • The urease is covalently immobilized on the surface of the magnetic particles to catalyze the conversion of urea to bicarbonate anion. The conversion was confirmed qualitatively using high-pressure liquid chromatography and UV/Vis spectrometry, and analyzed quantitatively with cyclic voltammetry. The amount of conversion with respect to time was measured and analyzed by the reaction rate equation to calculate a reaction rate constant of 0.0474 min-1. In the 1 to 3 cycles, a conversion percentage of over 90% was found, and it was possible to reuse the urease 8 times up to the percentage of 50%. It was also observed that the stability evaluated for storage for 30 days was maintained. As a result of this study, it can be seen that the urease covalently immobilized on the scaffold can be used for urea removal for the purpose of producing ultrapure water.

Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex (폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조)

  • Nguyen, Linh Thi My;Li, Nan;Yoon, Hyon Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

Design of Denitrification Reactor by Using Permeabilized and Immobilized Paracoccus denitrificans (Permeabilized Paracoccus denitrificans를 이용한 고정화 균주의 탈질화 반응기 설계)

  • Yun, Mi-Sun;Song, Ju-Yeong;Park, Keun-Ho
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.100-105
    • /
    • 2005
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. Denitrification bacterium, Paracoccus denitrificans (KCTC 2350) is employed to estimate the denitrification ability and the characteristics. In the immobilized biological reactor system, the measurement of absolute amount of active strain in the reactor is comparatively difficult or impossible. In this. study, a reactor was designed with the unwoven texture wrapped peep holed plastic tube to calculate the absolute amount of active strain by comparing the activity of the permeabilized and or immobilized reactor and the free cell reactor The reactor system was continuous stirred tank reactor and the reaction rate of substrate consumption was assumed to satisfy the Michaelis-Menten equation. The effluent concentration of nitrate and nitrite was measured to estimate the apparent parameter of Michaelis-Menten equation. As a result, we found that the amount of immobilized active strain was figured out to be half of the total active strain in the reactor and the time required to be reached in the equilibrium state in the permeabilized and or immobilized reactor system was figured out to be shorter than that of the free cell reactor system.

Immobilization and Characterization of Rifamycin B Oxidase in Cellulose Acetate Beads (셀룰로오스 아세테이트에 고정화된 리파마이신 B 산화효소의 특성)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.115-118
    • /
    • 1985
  • Rifamycin B oxidase converts rifamycin B to rifamycin S using oxygen as cosubstrate. Humnicola spp. (ATCC 20620) was treated with acetone and the cell powder was immobilized with cellulose acetate. The properties of the immobilized enzyme was examined. The optimum pHs of the immobilized and the free enzymes were 7.2. The optimum temperature of the immobilized enzyme was at 50-55$^{\circ}C$, which was 5$^{\circ}C$ higher than that of the free enzyme. The activities of the immobilized enzyme appeared less sensistive with respect to the changes of temperature and pH as compared to those of the free enzyme. Twenty percent of the enzyme activity was recovered when the enzyme was immobilized in 3mm beads. The storage stability was good below 4$0^{\circ}C$, but the activity decreased very rapidly above 5$0^{\circ}C$. The physical strength of the beads was good and was suitable as packing material in a three-phase enzyme reactor.

  • PDF