• Title/Summary/Keyword: chemical exposure

Search Result 1,290, Processing Time 0.03 seconds

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (1): Analysis of Hazard Ranks and Workplace Exposure Risks (사고대비물질 개인보호구 선정에 관한 연구(1): 물질유해성 및 작업위해성 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.419-429
    • /
    • 2016
  • Objectives: According to the new Chemical Control Act from the Korean Ministry of Environment (2014-259), workers handling hazardous chemicals should wear personal protective equipment (PPE). However the act simply states in basic phrases that every worker handling one or more of the 69 listed chemicals should wear PPE and does not consider the unique hazard characteristics of chemicals and work types. The main purpose of this study is to provide basic data to revise the act to suit particular work processes and situations. Methods: The hazard rank of the substances was classified based on hazardous characteristics such as LC50 and vapor pressure using matrix analysis. The workplace exposure risk of the substances was also determined through a matrix analysis based on the previously determined hazard ranks and the demands of manual handling together with the likelihood of accident frequency of the operation combined with the exposure of workers during spill accidents. Results: To meet the demands for developing subsequent guidelines for the risk-based application of PPE in hazardous workplaces, this study sorted the 69 listed chemicals into five hazardous categories based on their LC50 and vapor pressures, and also assigned exposure categories according to exposure vulnerability for various types of work which are frequently performed throughout the life cycle of the chemicals. Conclusion: In the next study, an exposure risk matrix will be produced using the hazard rank of chemicals and workplace exposure risk, and then PPE will be selected to suit the categories of the exposure risk matrix.

Exposure Characteristics of Chemical Hazards in Metalworking Operations using an Employee Exposure Assessment Database (작업환경측정 자료를 이용한 CNC공정의 유해물질 노출 특성)

  • Lee, Jaehwan;Park, Donguk;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.230-239
    • /
    • 2018
  • Objective: The purpose of this study is to identify the kinds and exposure levels of health hazards in the metalworking process in relation to acute poisoning accidents caused by methanol in 2016. Methods: The number of industries, workplaces, exposed workers, regional distribution, and exposure level of health hazards in metalworking process were investigated based on employee exposure assessment database provided by KOSHA (the Korea Occupational Safety and Health Agency), which was collected from workplace hazard evaluation programs in Korea. Exposure metrics for methanol were assessed by RCR (risk characterization ratio). Results: The numbers of processes, workplaces, and exposed workers of metalworking, which include CNC (computer numerical control) were 25, 14,405, and 169,102 respectively. The numbers of samples of chemical hazards including methanol were 91,325, and it was found that workers in metalworking were exposed to 249 kinds of chemical hazards. There were 16 kinds of special controlled substances including beryllium. It is estimated that the number of workplaces involving CNC process was 2,537, and the number of exposed workers was 27,976. In CNC process, the total number of workplaces handling methanol was 36, and 298 workers were estimated to be exposed. There was no exceeded that surpassed the OEL and 49% of samples were below the limit of detection. Methanol exposure concentrations in Gyeonggido Province were statistically significantly higher than in other areas (p <0.0001). Conclusions: In the metalworking process including CNC, there is exposure to a wide variety of health hazards. There was no sample exceeding the OEL for methanol. Therefore, it is necessary to recognize the limits of the employee exposure assessment system and urgently improve measures to prevent the occurrence of events like methanol poisoning.

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (2): Analysis Using an Exposure Risk Matrix (사고대비물질 개인보호구 선정에 관한 연구(2): 노출위해성 매트릭스에 의한 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.430-437
    • /
    • 2016
  • Objectives: The new Chemical Control Act from the Korean Ministry of Environment (2014-259) simply states only in basic phrases that every worker handling the listed chemicals should wear personal protective equipment (PPE) and does not consider the different hazard characteristics of particular chemicals or work types. The purpose of this study was to produce an exposure risk matrix and assign PPE to the categories of this matrix, which would be useful for revising the act to suggest PPE to suit work types or situations. Methods: An exposure risk matrix was made using hazard ranks of chemicals and workplace exposure risks in the previous study. For the 20 categories of exposure risk matrix PPE, levels A, B, C, D as classified by OSHA/EPA were assigned. After 69 hazardous chemicals were divided into 11 groups according to their physiochemical characteristics, respirators, chemical protective clothing (CPC), gloves and footwear were suggested on the basis of the assigned PPE levels. Results: PPE table sheets for the 11 groups were made on the basis of work types or situations. Full facepiece or half-mask for level C was recommended in accordance with the exposure risk matrix. Level A was, in particular, recommended for loading or unloading work. Level A PPE should be worn in an emergency involving hydrogen fluoride because of the number of recent related accidents in Korea. Conclusion: PPE assignment according to the exposure risk matrix made by chemical hazards and work type or situation was suggested for the first time. Each type of PPE was recommended for the grouped chemicals. The research will be usefully used for the revision of the Chemical Control Act in Korea.

Induction of Apoptosis in the Testes of SD Rats After Exposure to 2-Bromopropane

  • Kim, Young-Hee;Cho, Sung-Whan;Ha, Chang-Su;Kang, Boo-Hyon
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.241-248
    • /
    • 2001
  • Exposure to 2-Bromopropane has been known to cause degeneration of male germ cells. However the mechanism underlying this process is poorly understood. The objective of this study was to determine whether or not the exposure of male Sprague-Dawley rats to 2-BP induces apoptosis in male germ cells. Male rats(N=3 or 4 in each group) were orally administered either with the corn oil vehicle (10 ml/kg body weight) or with 2-BP (3,500 mg/kg) once a day for 3 days. The presence of apoptosis was determined by TUNEL detection in situ and by an increase in DNA fragmentation. A low spontaneous incidence of apoptosis was observed in vehicle control animals, especially in pre-meiotic germ cells of stages I-VI and stages XII-XIV the seminiferous tubules. In 2-BP exposure rats, the incidence of apoptosis markedly increased at 4 h, reached a peak at 8 h (about 7-fold over control), and then decreased rapidly to control level by 48 h after the last administration. Although apoptosis induced by 2-BP occurred in all stages of germ cells, it was most pronounced in spermatogonia and early spermatocytes in stages I-VI and stages XII-XIV. Taken together, our results suggest that apoptosis is involved in the toxicity of testicular germ cells resulting in oligospermia or azoospermia after exposure to 2-BP.

  • PDF

Comparative Study of Exposure Potential and Toxicity Factors used in Chemical Ranking and Scoring System (화학물질 우선순위선정 시스템에서 고려되는 노출.독성인자 비교연구)

  • An, Youn-Joo;Jeong, Seung-Woo;Kim, Min-Jin;Yang, Chang-Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Chemical Ranking and Scoring (CRS) system is a useful tool to screen priority chemicals of large body of substances. The relative ranking of chemicals based on CRS system has served as a decision-making support tools. Exposure potential and toxicity are significant parameters in CRS system, and there are differences in evaluating those parameters in each CRS system. In this study, the parameters of exposure potential, human toxicity, and ecotoxicity were extensively compared. In addition the scoring methods in each parameter were analyzed. The CRS systems considered in this study include the CHEMS-1 (Chemical Hazard Evaluation for Management Strategies), SCRAM (Scoring and Ranking Assessment Model), EURAM (European Union Risk Ranking Method), ARET (Accelerated Reduction/Elimination of Toxics), and CRS-Korea. An comparative analysis of the several CRS systems is presented based on their assessment parameters and scoring methods.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Assessment of Semi-Quantitative Health Risks of Exposure to Harmful Chemical Agents in the Context of Carcinogenesis in the Latex Glove Manufacturing Industry

  • Yari, Saeed;Asadi, Ayda Fallah;Varmazyar, Sakineh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.205-211
    • /
    • 2016
  • Excessive exposure to chemicals in the workplace can cause poisoning and various diseases. Thus, for the protection of labor, it is necessary to examine the exposure of people to chemicals and risks from these materials. The purpose of this study is to evaluate semi-quantitative health risks of exposure to harmful chemical agents in the context of carcinogenesis in a latex glove manufacturing industry. In this cross-sectional study, semi-quantitative risk assessment methods provided by the Department of Occupational Health of Singapore were used and index of LD50, carcinogenesis (ACGIH and IARC) and corrosion capacity were applied to calculate the hazard rate and the biggest index was placed as the basis of risk. To calculate the exposure rate, two exposure index methods and the actual level of exposure were employed. After identifying risks, group H (high) and E (very high) classified as high-risk were considered. Of the total of 271 only 39 (15%) were at a high risk level and 3% were very high (E). These risks only was relevant to 7 materials with only sulfuric acid placed in group E and 6 other materials in group H, including nitric acid (48.3%), chromic acid (6.9%), hydrochloric acid (10.3%), ammonia (3.4%), potassium hydroxide (20.7%) and chlorine (10.3%). Overall, the average hazard rate level was estimated to be 4 and average exposure rate to be 3.5. Health risks identified in this study showed that the manufacturing industry for latex gloves has a high level of risk because of carcinogens, acids and strong alkalisand dangerous drugs. Also according to the average level of risk impact, it is better that the safety design strategy for latex gloves production industry be placed on the agenda.

INDUCTION OF APOPTOSIS IN TESTIS OF SD RATS AFTER EXPOSURE 2-BROMOPROPANE

  • Kim, Young-Hee;Cho, Sung-Whan;Ha, Chang-Su;Kang, Boo-Hyon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.120-120
    • /
    • 2001
  • Exposure of testis to 2-BP is known to cause degeneration of male germ cells. However, the mechanism underlying this process is poorly understood. The objective of this study was to determine whether 2-BP induces apoptosis during onset of toxicity in germ cells of male Sprague-Dawley rats.(omitted)

  • PDF

Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption

  • Oktavian, Rama;Poerwadi, Bambang;Pardede, Kristian;Aulia, Zuh Rotul
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.260-268
    • /
    • 2021
  • Adsorption is the most promising technology used to adsorb CO2 to reduce its concentration in the atmosphere due to its functional effectiveness. Various porous materials have been extensively synthesized to boost CO2 adsorption efficiency, for example, zeolite. Here, we report the synthesis process of zeolite adsorbent impregnated with amine, combining the benefit of these two substances. We compared conventional heating with microwave-assisted heating by varying concentrations of monoethanolamine in methanol (10% v/v and 40% v/v) as a liquid solution. The results showed that monoethanolamine impregnation helps significantly increase adsorption capacity, where adsorption occurs as a physisorption and not as chemisorption due to the adsorbent's steric hindrance effect. The highest adsorption capacity of 0.3649 mmol CO2 / gram adsorbent was reached by microwave exposure for 10 minutes. This work also reveals that a decrease in CO2 adsorption capacity was observed at a longer exposure period, and it reached a constant 40-minute adsorption rate. Impregnating activated zeolite with 40% monoethanolamine for 10 minutes in addition to microwave exposure (0.8973 mmol CO2 / gram adsorbent) is the maximum adsorption ability achieved.

Exposure Assessment in Risk Assessment

  • Herrick Robert F.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.426-430
    • /
    • 1994
  • The assessment of exposure is an important component of the risk assessment process. Exposure information is used in risk assessment in at least two ways: 1) in the identification of hazards and the epidemiologic research investigating exposure-response relationships and 2) in the development of population exposure estimates. In both of these cases, the value of a chemical risk assessment is enhanced by improvements in the quality of exposure assessments. The optimum exposure assessment is the direct measurement of population exposure; however, such measurements are rarely available. Recent developments in methods for exposure assessment allow estimates to be made that are valid representations of actual exposure. The use of these exposure estimates to classify exposures correctly enhances the likelihood that causal associations between exposure and response will be correctly identified and that population risks will be accurately assessed.

  • PDF