• Title/Summary/Keyword: chemical defense

Search Result 402, Processing Time 0.025 seconds

Hepatoprotcetive Effects of Oyster (Crassostrea gigas) Extract in a Rat Model of Alcohol-Induced Oxidative Stress (알코올로 유도된 간 손상 동물모델에서 굴 추출물의 간 보호 효과)

  • Osaki, Kenji;Arakawa, Teruaki;Kim, Bumsik;Lee, Minjae;Jeong, Changsik;Kang, Namgil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.805-811
    • /
    • 2016
  • This study was conducted to investigate the protective effects of water extract from Crassostrea gigas (CGW) against ethanol-induced hepatic toxicity in rats. Seventy-two male Wistar rats (6-week-old) were divided into six groups of 12 animals each: control group (1 mL saline/d), ethanol-treated group, positive control group (ethanol+Hovenia dulcis Thunb extract), CGWL group (ethanol+low dosage of CGW), CGWM group (ethanol+medium dosage of CGW), and CGWH group (ethanol+high dosage of CGW). All groups except the control group received ethanol (40% ethanol 5 g/kg) orally. CGW administration with ethanol resulted in prevention of ethanol-induced hepatotoxicity by increasing levels of serum alanine aminotransferase and ${\gamma}-glutamyltransferase$. CGW supplementation significantly reduced formation of malonaldehyde and inhibited reduction of hepatic glutathione and peroxidase levels, as compared with the ethanol-administration group. Further, CGW suppressed expression of CYP2E1, which was elevated by ethanol administration. Consequently, our results indicate that Crassostrea gigas may exert hepatoprotective effects against alcohol-induced hepatocyte injury by intensifying the anti-oxidative defense system.

Physiological Activities of Extracts of Cedrela sinensis leaves (참죽나무 잎 추출물의 생리활성)

  • Shin, Hee-June;Jeon, Young-Jin;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • The purpose of this study was to confirm the content of total polyphenol, antioxidative and immune activities of the extracts of Cedrela sinensis leaf. The content of total polyphenol of water extracts ranged from 46.5-59.6 mg/100 g, which was higher than other extracts using organic solvents such as EtOAc, $CH_2Cl_2$ and $C_6H_{14}$. The antioxidant activity of the water and organic solvents extracts showed 6-33% in terms of 2,2-diphenyl-picryl-hydrazyl (DPPH) scavenging activity. To analyze the immuno-stimulation activity of C. sinensis leaf extract, we investigated the effect of the extracts on NO synthesis which is important in host defense against bacterial infection. Hot water extracts significantly increased NO generation by RAW 264.7, macrophage cell line, while organic solvent extract has no significant effect on NO production. To further analyzed the anti-inflammatory effect of the extracts, we investigated the effects of the extracts on lipopolysaccharide(LPS)-induced NO generation. Organic solvent extracts of C. sinensis leaves showed strong inhibitory effect on NO production in LPS-stimulated RAW 264.7 cells. These results suggest that C. sinensis leaf extract may represent a useful immune stimulating agent and anti-inflammatory agent.

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Determination of Interaction Parameter χ of the 1,2,3-Triazole Crosslinked Polymer (1,2,3-트리아졸 폴리머의 상호계수 χ의 결정)

  • Lee, Dong-Hoon;Lee, Sookyeong;Kim, Kyoung Tae;Paik, Hyun-Jong;Jeon, Heung Bae;Min, Byoung Sun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The crosslinking density of polymer can be quantitatively calculated by the Flory-Rehner equation using the swelling experimental data and the lattice constant ${\beta}_1$ of interaction parameter (${\chi}$) in this equation should be chosen have used cautiously. This ${\beta}_1$ is the experimental data by rule of thumb, and researchers have used little different values respectively. Generally, the average molecular weight between crosslink points $M_c$ in the Flory-Rehner equation and the Mooney-Rivlin equation have the same value, and ${\beta}_1$ can be calculated when the $M_c$ in the Flory-Rehner equation is given. Therefore, in this research, firstly we calculated the $M_c$ using the selected ${\beta}_1$ (=0.34) and the swelling experimental data of 1,2,3-triazole polymer from the Flory-Rehner equation, secondly the $M_c$ from the Mooney-Rivlin equation is calculated by the tensile experimental data, and finally two $M_c$ were compared. As a result, two $M_c$ values were almost the same, and it was proved that the ${\beta}_1$ (=0.34) was selected properly.

An Analysis of STS Contents in the General Science Textbooks(Chemistry Parts) of High School (공통과학 교과서 화학영역의 STS 내용 분석)

  • Choi, In Young;Kim, Yun Hi;Lee, Seok Hee;Moon, Seong Bae
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.256-263
    • /
    • 2001
  • The STS contents, emphasized in the 6th curriculum, in the chemistry parts of general science textbooks were analyzed. The STS contents of textbooks showed average of 24.4%. The chapter in "modern science and technology" were included 45.5% in STS contents, 38.7% in "environment", 29.1% in energy, and 14.0% in "materials". When the STS contents were analyzed by STS topics of Piel, the results are as follows; 38.3% on environmental quality and utilization of natural source, 29.6% on effect of technological developments, 7.9% on energy, and 0.6% on human engineering. However, there were no topics on population, space research and national defense. When the STS contents were analyzed by student activities of SATIS, most of the activities were research and case study. There were few field activities of role play, problem solving and decision making, and research design.

  • PDF

Eupatorium chinensis var. simplicifolium Root Extract Inhibits the Lipopolysaccharide-Induced Inflammatory Response in Raw 264.7 Macrophages by Inhibiting iNOS and COX-2 Expression (Raw 264.7 대식세포에서 등골나물 뿌리 추출물의 염증반응 조절 분자 iNOS와 COX-2 발현 억제 효과)

  • Lee, Jin-Ho;Kim, Dae-Hyun;Shin, Ji-Won;Park, Sae-Jin;Kim, Yoon-Suk;Shin, Yu-Su;Yu, Ji-Yeon;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1137-1144
    • /
    • 2012
  • Inflammation is a host defense mechanism that is activated in response to harmful substances or pathogens. However, an excessive inflammatory response is a problem in itself. Macrophages secrete inflammatory mediators such as nitric oxide (NO) or cytokines through various pathways such as the nuclear factor kappa B (NF-${\kappa}B$)-activated pathway after recognizing pathogen-like lipopolysaccharides (LPSs). In this study, anti-inflammatory effects of Eupatorium chinensis var. simplicifolium (EUC) extracts were investigated using LPS-stimulated RAW 264.7 macrophages. The EUC root extract significantly reduced NO production, inducible nitric oxide synthase (iNOS) expression, and cyclooxygenase-2 expression in a concentration-dependent manner. In addition, the EUC root extract reduced phosphorylation of mitogen-activated protein kinases and protein kinase B, which is upstream of NF-${\kappa}B$. The EUC root extract also reduced the degradation of inhibitory kappa B. These results indicate that EUC root extract exerts anti-inflammatory effects, which are mediated by inhibition of iNOS expression and the NF-${\kappa}B$ pathway.

Infrared Emissivity of Stainless Steel Coated with Composites of Copper Particle and m-Aramid Resin (구리입자/메타아라미드 수지 복합재료 도포 스테인리스 철판의 적외선 방사 특성)

  • Oh, Chorong;Kim, Sunmi;Park, Gyusang;Choi, Seongman;Lee, Dai Soo;Myoung, Rhoshin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • As a part of studies to lower the infrared (IR) emissivity from the surface of exhaust nozzle in the turbo jet engine, stainless steel plate was coated with copper particle/meta-aramid resin composites and the IR emissivity of the plate were investigated. Binders of filler particles based on synthetic polymers generally undergo thermal decomposition before $300^{\circ}C$. It was found that the meta aramid resin was thermally stable after the test at $320^{\circ}C$, confirming the excellent thermal stability. Contents of copper particles in the composites were varied from 0 to 70% by volume. It was observed that the copper particle/meta aramid resin composites showed good adhesion after the tests at $320^{\circ}C$. The specimen coated with the composite containing 50 vol% of copper particles showed the lowest IR emissivity, 0.6, at $320^{\circ}C$.

Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process (HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.620-627
    • /
    • 2019
  • In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

A study on the comparative test of chemical and thermal properties of virgin and recycled PET products (버진 및 리사이클 PET 제품의 화학적·열적 특성 비교시험에 관한 연구)

  • Kim, Kyoung Pil;Seo, Kyung Jin;Park, Soo-Yong;Chung, Ildoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • As the interest and demand in the recycled yarn field has increased rapidly worldwide, domestic companies are also promoting research and development and business on recycled yarn. The chemical and thermal properties of four types of virgin and recycled PET samples from A and B company, which are the leading domestic companies in the recycled polyester yarn business, were confirmed through infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Virgin and recycled PET from two companies were compared. FT-IR spectroscopy revealed the typical spectra of PET for both companies and a different peak at 872 cm-1. DSC confirmed that the melting point and crystallization temperature of recycled PET were lower than those of virgin PET. These results indicate that small amounts of contaminants are an important parameter affecting the thermal properties of recycled PET. In the DSC results after seven repeats of the heating and cooling processes, all four samples showed that a lower melting point, crystallization temperature, and low heat flow intensity increased with increasing number of cycles. The results of melting and crystallization enthalpy also showed similar patterns.