• Title/Summary/Keyword: chemical concentrations

Search Result 3,549, Processing Time 0.027 seconds

Changes in Phenolic Composition, Antioxidant and Antidiabetic Properties of Jeju Citrus sudachi as Influenced by Maturity (수확시기별 제주산 영귤의 항산화 및 항당뇨 활성 비교)

  • Lee, Ji Eun;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1311-1318
    • /
    • 2015
  • The effects of fruit maturation on changes in the total phenolics, flavonoids, and carotenoids of methanolic extracts of Citrus sudachi, in addition to its antioxidant and antidiabetic activities, were determined. Generally, the concentration of these chemical constituents increased as C. sudachi reached maturity. C. sudachi contained high levels of total phenolics, flavonoids, and carotenoids at maturity, contributing 6339.5 mg of gallic acid equivalent per 100 g, 2364.2 mg of rutin equivalent per 100 g, and 678.7 mg/ml, respectively. The scavenging activities of 1,1-diphenyl-2-picryl hydrazyl (DPPH), hydrogen peroxide and nitric oxide radicals and the reducing power of mature fruits were significantly higher at all data points than those of immature fruits (p<0.05). In contrast, the ferrous ion chelating activity of mature and immature C. sudachi fruits was similar. The 50% effective concentrations (EC50) of mature fruits were 4.1±0.10 mg/ml for scavenging DPPH radicals, 3.1±0.02 mg/ml for scavenging hydrogen peroxide, 3.9±0.01 mg/ml for scavenging nitric oxide, and 3.8±0.02 mg/ml for chelating ferrous ion. The antidiabetic activity of C. sudachi was studied in vitro using the α-glucosidase inhibitory method. The inhibitory activity of mature C. sudachi fruits on α-glucosidase was higher than that of immature fruits. These results suggest that the content of bioactive compounds and the antioxidant and antidiabetic activities of C. sudachi change during maturation. These findings can be further extended to exploit them for their possible application for the preservation of food products, as well as their use as health supplements and nutraceuticals.

Effect of Environmental Factors on the Growth of Microcystis aeruginosa (Cyanobacteria) in Agricultural Reservoirs (농업용 저수지에서 환경 요인이 Microcystis aeruginosa (cyanobacteria) 성장에 미치는 영향)

  • Kwon, O-Chang;Park, Jung-Won;Chung, Gyu-Young;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1183-1189
    • /
    • 2011
  • The present study is aimed at examining the effects of the physico-chemical environmental factors of water systems on water bloom at Homin and Gagok reservoirs in Pungcheon-Myeon, Andong, Gyeongsangbuk-do. The mean water temperature and the contents of chlorophyll-a, total-nitrogen, total-phosphorus and phosphate-phosphorus were higher at the Gagok reservoir. On the other hand, the pH mean value was higher at the Homin reservoir. The mean value of microelements (Na, K, Mg, Fe, Si) was higher at the Gagok reservoir. The cyanobacteria which was considered to be the cause of water bloom at the two reservoirs was Microcystis aeruginosa. It started to grow in May and showed the highest standing crop in August. Between the increase of standing crop of M. aeruginosa and the water quality, correlation values of $Na^+$ (r=-0.910, p<0.05), $Fe^{2+}$ (r=-0.855, p<0.05) and $Si^{4+}$ (r=0.989, p<0.01) at the Homin reservoir increased amount of standing crop. Meanwhile, at the Gagok reservoir, the contents of $Na^+$ (r=-0.776, p<0.05), $Si^{4+}$ (r=0.899, p<0.05) were highly related to the increase of standing crop. Interestingly, Si, which is the limiting factor for diatoms, has a high correlation with standing crop of cyanobacteria. In conclusion, the water blooming is caused not by a simple factor but a synergistic effect due to complex actions including high concentrations of nitrogen and phosphorus ions and many other environmental factors.

Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay (생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측)

  • Kwoun, Chul-Hui;Kang, Hoon;Cho, Kwang-Woo;Maeng, Jun-Ho;Jang, Kyu-Sang;Lee, Seung-Yong;Seo, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The long-term water-quality change of Asan Bay by the influx of polluted disposal water was predicted through a simulation with an Eco-hydrodynamic model. Eco-hydrodynamic model is composed of a multi-level hydrodynamic model to simulate the water flow and an ecosystem model to simulate water quality. The water quality simulation revealed that the COD(Chemical Oxygen Demand), dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) are increased at 5 stations for the subsequent 6 months after the influx of the effluent. COD, DIN and DIP showed gradual decreases in concentration during the period of one to two years after the increase of last 6 months and reached steady state for next three to ten years. Concentration levels of COD, DIN, and DIP showed the increase by the ranges of $11{\sim}67%$, $10{\sim}67%$, and $0.5{\sim}7%$, respectively, which represents that the COD and DIN are the most prevalent pollutants among substances in the effluent through the sewage treatment plant. The current water quality of Asan Bay based on the observed COD, TN and TP concentrations ranks into the class II of the Korean standards for marine water quality but the water quality would deteriorate into class III in case that the disposal water by the sewage plant is discharged into the Bay.

  • PDF

Nutrient Intake, Its Utilization, Rumen Fermentation Pattern and Blood Bio-Chemical Constituents of Sheep Fed Urea Treated Mustard (Brassica campestris) Straw

  • Misra, A.K.;Karim, S.A.;Verma, D.L.;Mishra, A.S.;Tripathi, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1674-1680
    • /
    • 2000
  • A study was conducted to compare the feeding value of urea treated and untreated mustard straw (MS) for sheep. Treated MS was prepared by adding urea-N at 1.84% and followed by packing in a pit silo for 21 days. Two groups of six empty Avikaline ewes were fed untreated (UTMS) and treated (TMS) mustard straw along with 200 g concentrate per head daily for 90 days. Untreated MS had 0.41% N and the urea treatment increased its N value to 1.58 %. The cell wall constituents were decreased in the TMS except for cellulose which remained unaffected. Dry matter intake of TMS was consistently higher than that of UTMS. Digestibility of DM, OM and fibre fractions of MS improved by the urea treatment. Ewes in both groups were in positive N balance while % N retention was lower in UTMS (26.30%) than in TMS (52.14%). The TMS fed group on average consumed 30.2 g DM, 2.9 g digestible crude protein and $0.2MJ\;DE\;per\;kg\;BW\;day^{-1}$ and maintained their weight whereas, the UTMS fed ewes lost weight. The VFA concentration in rumen liquor was higher in TMS than in UTMS. Total-N, ammonia-N and TCA-precipitable-N were also higher in TMS fed ewes. Blood glucose concentrations in the two groups were similar at initiation of the study. However the glucose concentration of UTMS fed group was significantly (p<0.01) lower than those fed UTMS at the termination of the study. Urea-N concentration was also higher in TMS fed group after 90 days of feeding period. It is concluded that urea treatment of MS improved N value of MS from 0.41% to 1.58% along with sizable improvement in nutritive value and in conjunction with 200 g concentrate, TMS can serve as maintenance ration for sheep. ($ME_{lakt}/ME_{m}=1.46$).

Cytotoxicity of Trichoderma spp. Cultural Filtrate Against Human Cervical and Breast Cancer Cell Lines

  • El-Rahman, Atef Abd El-Mohsen Abd;El-Shafei, Sally Mohamed Abd El-Aziz;Ivanova, Elena Vladimirovna;Fattakhova, Alfia Nurlimanovna;Pankova, Anna Victorovna;El-Shafei, Mohamed Abd El-Aziz;El-Morsi, El-Morsi Abu El-Fotouh;Alimova, Farida Kashifovna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7229-7234
    • /
    • 2014
  • Trichoderma spp. are known as a rich source of secondary metabolites with biological activity belonging to a variety of classes of chemical compounds. These fungi also are well known for their ability to produce a wide range of antibiotic substances and to parasitize other fungi. In search for new substances, which might act as anticancer agents, the overall objective of this study was to investigate the cytotoxic effects of Trichoderma harzianum and Trichoderma asperellum cultural filtrates against human cervical and breast cancer cell lines (HeLa and MCF-7 cells respectively). To achieve this objective, cells were exposed to 20, 40, 60, 80 and 100 mg/ml of both T. harzianum cultural filtrate (ThCF) and T. asperellum cultural filtrate (TaCF) for 24h, then the cell viability and the cytotoxic responses were assessed by using trypan blue and 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assays. Morphological changes in cells were investigated by phase contrast inverted microscopy. The results showed that ThCF and TaCF significantly reduce the cell viability, have cytotoxic effects and alter the cellular morphology of HeLa and MCF-7 cells in a concentration dependent manner. A concentration of 80 and 100mg/ml of ThCF resulted in a sharp decline in the cell viability percent of HeLa and MCF-7 respectively (25.2%, 26.5%) which was recorded by trypan blue assay. The half-maximal inhibitory concentrations ($IC_{50}$) of ThCF and TaCF in HeLa and MCF-7 were recorded as 16.6, 12.0, 19.6 and 0.70mg/ml respectively by MTT assay. These results revealed that ThCF and TaCF have a substantial ability to reduce the viability and proliferation of human cervical and breast cancer cells.

Synergistic Increase of Oxidative Stress and Tumor Markers in PAH-Exposed Workers

  • Gao, Mei-Li;Chen, Lei;Li, Yong-Fei;Xue, Xiao-Chang;Chen, Lan;Wang, Li-Na;Shah, Walayat;Kong, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7105-7112
    • /
    • 2014
  • In this study, we investigated oxidative stress and tumor marker levels of polycyclic aromatic hydrocarbons (PAHs) in 136 coke oven workers and in 60 control subjects, and evaluated the correlation between oxidative stress and tumor marker levels. Questionnaires on basic demographic information were also administered. Significant differences in employment time and percentages of alcohol drinkers were observed between the control and exposed groups. PAH exposure was assessed using urinary 1-hydroxy-pyrene (1-OHP) levels and was found to be significantly higher in workers than in the controls. Significant differences (P<0.001) of MDA, GST, LDH, NSE, Cyfra21-1, and of SCC and TNF-a (P<0.0001 and P<0.05, P<0.001, respectively) levels were observed among controls and coke-oven workers, except for bottom coke oven workers. Associations between age and risk of increased TNF-a, smoking and increased GST activities, and drinking with increased MDA concentrations, were marginal (P=0.055, P=0.048, P=0.057, respectively). The association between smoking with MDA (P=0.004), NSE (P=0.005), SCC (P=0.004) andTNF-a (P<0.001), and drinking with TNF-a levels was significant (P=0.012). In addition, a significant positive correlation between oxidative stress and tumor markers was found in the present study. These results suggest that a synergistic increase of oxidative stress and tumor markers induced by PAHs may play a role in toxic responses for PAHs in coke oven workers.

An Influence of Point-Source and Flow Events on Inorganic Nitrogen Fractions in a Large Artificial Reservoir (대형 인공호에서 무기 질소원에 대한 점오염원 및 유입수의 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.350-357
    • /
    • 2000
  • This paper evaluated the influence of point source and flow events on inorganic nitrogen fractions at 17 sites of Taechung Reservoir during 1993${\sim}$1994. Total nitrogen (TN) averaged 1.53 mg/L during the study and ranged between 0.70 and 2.56 mg/L. Dissolved inorganic nitrogen(DIN) accounted for >90% of TN regardless of season and location, indicating a nitrogen-rich system showing eutrophic${\sim}$hypereutrophic conditions. Some 67${\sim}$94% of DIN was NO$_{3}$-N, whereas mean level of NH$_{4}$-N was less than 5% of DIN. During monsoon 1993, dilution of NO$_{3}$-N was evident in the headwaters as a result of mixing of lake water with rain water, while NH$_{4}$-N increased>100% compared to the premonsoon. Values of NH$_{4}$-N had a positive correlation with rainfall (r=0.85; p<0.001) and negative correlations with theoretical water residence time(r=-0.90; p<0.001) and conductivity(r=-0.78, p<0.001), respectively. These outcomes suggest that NH$_{4}$-N came from external input from the watershed during the monsoon. In both years, mean TN was greater in the mid-lake sites than any other sites. A great amount of TN in the mid-lake was most pronounced in monsoon 1994 because of an accumulated influence of the point sources during low inflow. Overall data suggest that concentrations of TN in this system did not show large differences along the longitudinal gradients and its distributions is likely determined by point-sources rather than inflow regime.

  • PDF

Ammonia Volatilization from Rice Paddy Soils Fertilized with 15N-Urea Under Elevated CO2 and Temperature

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Dong-Suk;Lee, Sun-Il;Park, Hyun-Jung;Kim, Han-Yong;Nam, Hong-Shik;Cho, Kyeong-Min;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2009
  • It has widely been observed that the effect of elevating atmospheric $CO_2$ concentrations on rice productivity depends largely on soil N availabilities. However, the responses of ammonia volatilization from flooded paddy soil that is an important pathway of N loss and thus affecting fertilizer N availability to concomitant increases in atmospheric $CO_2$ and temperature has rarely been studied. In this paper, we first report the interactive effect of elevated $CO_2$ and temperature on ammonia volatilization from rice paddy soils applied with urea. Urea labeled with $^{15}N$ was used to quantitatively estimate the contribution of applied urea-N to total ammonia volatilization. This study was conducted using Temperature Gradient Chambers (TGCs) with two $CO_2$ levels [ambient $CO_2$ (AC), 383 ppmv and elevated $CO_2$ (EC), 645 ppmv] as whole-plot treatment (main treatment) and two temperature levels [ambient temperature (AT), $25.7^{\circ}C$ and elevated temperature (ET), $27.8^{\circ}C$] as split-plot treatments (sub-treatment) with triplicates. Elevated temperature increased ammonia volatilization probably due to a shift of chemical equilibrium toward $NH_3$ production via enhanced hydrolysis of urea to $NH_3$ of which rate is dependent on temperature. Meanwhile, elevated $CO_2$ decreased ammonia volatilization and that could be attributed to increased rhizosphere biomass that assimilates $NH_4^+$ otherwise being lost via volatilization. Such opposite effects of elevated temperature and $CO_2$ resulted in the accumulated amount of ammonia volatilization in the order of ACET>ACAT>ECET>ECAT. The pattern of ammonia volatilization from applied urea-$^{15}N$ as affected by treatments was very similar to that of total ammonia volatilization. Our results suggest that elevated $CO_2$ has the potential to decrease ammonia volatilization from paddy soils applied with urea, but the effect could partially be offset when air temperature rises concomitantly.

The Applicability of the Acid Mine Drainage Sludge in the Heavy Metal Stabilization in Soils (산성광산배수슬러지의 토양 중금속 안정화 적용 가능성)

  • Kim, Min-Suk;Min, Hyungi;Lee, Byeongjoo;Chang, Sein;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong-Sik;Bak, Gwan-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2014
  • BACKGROUND: Recent studies using various industrial wastes for heavy metal stabilization in soil were conducted in order to find out new alternative amendments. The acid mine drainage sludge(AMDS) contains lots of metal oxides(hydroxides) that may be useful for heavy metal stabilization not only waste water treatment but also soil remediation. The aim of this study was to investigate the applicability of acid mine drainage sludge for heavy metals stabilization in soils METHODS AND RESULTS: Alkali soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine sites nearby. Three different amounts(1%, 3%, 5%) of AMDS were applied into control soil and contaminated soil. For determining the changes in the extractable heavy metals, $CaCl_2$ and Mehlich-3 were applied as chemical assessments for metal stabilization. For biological assessments, lettuce(Lactuca sativa L.) and chinese cabbage(Brassica rapa var. glabra) were cultivated and accumulation of heavy metals on each plant were determined. It was revealed that AMDS reduced heavy metal mobility and bioavailability in soil, which resulted in the decreases in the accumulation of As, Cd, Cu, Pb, and Zn in each plant. CONCLUSION: Though the high level of heavy metal concentrations in AMDS, any considerable increase in the heavy metal availability was not observed with control and contaminated soil. In conclusion, these results indicated that AMDS could be applied to heavy metal contaminated soil as an alternative amendments for reducing heavy metal mobility and bioavailability.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF