DOI QR코드

DOI QR Code

Changes in Phenolic Composition, Antioxidant and Antidiabetic Properties of Jeju Citrus sudachi as Influenced by Maturity

수확시기별 제주산 영귤의 항산화 및 항당뇨 활성 비교

  • Lee, Ji Eun (Toxicology Laboratory, Major in Biomaterials, College of Applied Life Science, SARI, Jeju National University) ;
  • Kim, Ji Hye (Toxicology Laboratory, Major in Biomaterials, College of Applied Life Science, SARI, Jeju National University) ;
  • Kim, Min Young (Toxicology Laboratory, Major in Biomaterials, College of Applied Life Science, SARI, Jeju National University)
  • 이지은 (제주대학교 생명자원과학대학 바이오소재전공 독성학 실험실) ;
  • 김지혜 (제주대학교 생명자원과학대학 바이오소재전공 독성학 실험실) ;
  • 김민영 (제주대학교 생명자원과학대학 바이오소재전공 독성학 실험실)
  • Received : 2015.08.24
  • Accepted : 2015.11.17
  • Published : 2015.11.30

Abstract

The effects of fruit maturation on changes in the total phenolics, flavonoids, and carotenoids of methanolic extracts of Citrus sudachi, in addition to its antioxidant and antidiabetic activities, were determined. Generally, the concentration of these chemical constituents increased as C. sudachi reached maturity. C. sudachi contained high levels of total phenolics, flavonoids, and carotenoids at maturity, contributing 6339.5 mg of gallic acid equivalent per 100 g, 2364.2 mg of rutin equivalent per 100 g, and 678.7 mg/ml, respectively. The scavenging activities of 1,1-diphenyl-2-picryl hydrazyl (DPPH), hydrogen peroxide and nitric oxide radicals and the reducing power of mature fruits were significantly higher at all data points than those of immature fruits (p<0.05). In contrast, the ferrous ion chelating activity of mature and immature C. sudachi fruits was similar. The 50% effective concentrations (EC50) of mature fruits were 4.1±0.10 mg/ml for scavenging DPPH radicals, 3.1±0.02 mg/ml for scavenging hydrogen peroxide, 3.9±0.01 mg/ml for scavenging nitric oxide, and 3.8±0.02 mg/ml for chelating ferrous ion. The antidiabetic activity of C. sudachi was studied in vitro using the α-glucosidase inhibitory method. The inhibitory activity of mature C. sudachi fruits on α-glucosidase was higher than that of immature fruits. These results suggest that the content of bioactive compounds and the antioxidant and antidiabetic activities of C. sudachi change during maturation. These findings can be further extended to exploit them for their possible application for the preservation of food products, as well as their use as health supplements and nutraceuticals.

본 연구는 9월과 11월에 수확한 영귤 미성숙과와 성숙과의 항산화 및 항당뇨 활성을 비교하였다. 총 폴리페놀, 플라보노이드 및 카로티노이드 함량을 분석한 결과 모두 성숙과의 함량이 높았다. 항산화 활성을 DPPH radical, hydrogen peroxide, nitric oxide 소거능, 금속 결합능 및 환원력으로 평가하고 이를 EC50으로 나타낸 결과 금속 결합능을 제외하고 성숙과의 활성이 유의적으로 높았다. α-Glucosidase 저해 활성을 통해 항당뇨 활성을 확인한 결과 성숙과가 높은 저해도를 나타내었다. 이를 통해 출하 시기를 놓친 영귤 성숙과도 건강기능식품 및 의약품 소재로 개발 가능성이 있다고 판단되며 이를 활용하기 위한 추가적인 연구가 필요하다고 사료된다.

Keywords

References

  1. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  2. Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
  3. Folin, O. and Denis, W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239- 243.
  4. Fridovich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  5. Graf, E. and Eaton, J. W. 1990. Antioxidant functions of phytic acid. Free Radic. Biol. Med. 8, 61-69. https://doi.org/10.1016/0891-5849(90)90146-A
  6. Hanefeld, M. 1998. The role of acarbose in the treatment of non–insulin-dependent diabetes mellitus. J. Diabetes Complications 12, 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  7. Higashimoto, M., Yamato, H., Kinouchi, T. and Ohnishi, Y. 1998. Inhibitory effects of citrus fruits on the mutagenicity of 1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid treated with nitrite in the presence of ethanol. Mutat. Res. 415, 219-226. https://doi.org/10.1016/S1383-5718(98)00079-5
  8. Horie, T., Masumura, M. and Okumura, F. S. 1961. Sudachitin, a new flavone pigment of sudachi. Bull. Chem. Soc. Jpn. 34, 1547-1548. https://doi.org/10.1246/bcsj.34.1547
  9. Horie, T., Tsukayama, M. and Nakayama, M. 1982. The structure and synthesis of sudachiin A, a new flavone glucoside from citrus sudachi. Bull. Chem. Soc. Jpn. 55, 2928-2932. https://doi.org/10.1246/bcsj.55.2928
  10. Hwang, J. H., Park, K. Y., Oh, Y. S. and Lim, S. B. 2013. Phenolic compound content and antioxidant activity of citrus peels. J. Kor. Soc. Food Sci. Nutr. 42, 153-160. https://doi.org/10.3746/jkfn.2013.42.2.153
  11. Hyon, J. S., Kang, S. M., Senevirathne, M. , Koh, W. J., Yang, T. S., Oh, M. C., Oh, C. K., Jeon, Y. J. and Kim, S. H. 2010. Antioxidative activities of extracts from dried citrus sunki and C. unshiu peels. J. Kor. Soc. Food Sci. Nutr. 39, 1-7. https://doi.org/10.3746/jkfn.2010.39.1.001
  12. Jeong, S. W., Lee, K. M., Jeong, J. W., Lee, Y. C., Lee, M. S. and Um, S. S. 1999. Physicochemical properties of korean citrus sudachi fruit by harvesting time and region. Kor. J. Food Sci. Technol. 31, 1503-1510.
  13. Joo, S. Y. 2013. Antioxidant activities of medicinal plant extracts. J. Kor. Soc. Food Sci. Nutr. 42, 512-519. https://doi.org/10.3746/jkfn.2013.42.4.512
  14. Kang, J. R., Hwang, C. R., Sim, H. J., Kang, M. J., Kang, S. T. and Shin, J. H. 2015. Biological activities of yellow garlic extract. J. Kor. Soc. Food Sci. Nutr. 44, 983-992. https://doi.org/10.3746/jkfn.2015.44.7.983
  15. Kim, B. S., Kim, H. S., Koh, J. S., J. and Kang, Y. 1996. carotenoid, color value, uv spectrum, organic acid and free sugar contents of citrus varieties produced in Cheju. Kor. J. Post-Harvest Sci. Technol. Agri. Products 3, 23-32.
  16. Kim, J. H. and Kim, M. S. 2003. Effect of different part of mandarin intake on antioxidative capacity in 15-month-old rats. Kor. J. Nutr. 36, 559-569.
  17. Kim, M. J., Hong, C. O., Nam, M. H. and Lee, K. W. 2011. Antioxidant effects and physiological activities of pumpkin (Cucurbita moschata Duch.) extract from different aerial parts. Kor. J. Food Sci. Technol. 43, 195-199. https://doi.org/10.9721/KJFST.2011.43.2.195
  18. Kim, M. J. and Park, E. J. 2011. Feature analysis of different in vitro antioxidant capacity assays and their application to fruit and vegetable samples. J. Kor. Soc. Food Sci. Nutr. 40, 1053-1062. https://doi.org/10.3746/jkfn.2011.40.7.1053
  19. Kim, M. Y. 2013. Free radical scavenging and ferrous ion chelating activities of citrus fruits derived from induced mutations with gamma irradiation. Life Sci. 10, 9s.
  20. Kim, M. Y., Kim, I. J., Lee, H. Y., Lee, D. S., Im, S. J., Kim, J. H., Byun, J. H., Kim, J. Y., Lee, Y. J. and Jeong, S. R. 2012. Characterization of the antioxidant properties of citrus mutants induced by Gamma-rays. Life Sci. 9, 1495-1500.
  21. Kim, Y. D. 2009. Study on the composition of flavonoids and biological activities from jeju citrus fruits. Jeju National University Graduate School.
  22. Kim, Y. D., Ko, W. J., Koh, K. S., Jeon, Y. J. and Kim, S. H. 2009. Composition of flavonoids and antioxidative activity from juice of Jeju native citrus fruits during maturation. Kor. J. Nutr. 42, 278-290. https://doi.org/10.4163/kjn.2009.42.3.278
  23. Kim, Y. D., Lee, Y. C., Oh, Y. J. and Kang, Y. J. 2001. Changes of components of citrus sudachi juice heated at various temperatures. Kor. J. Food Sci. Technol. 33, 238-244.
  24. Kim, Y. D., Mahinda, S., Koh, K. S., Jeon, Y. J. and Kim, S. H. 2009. Reactive oxygen species scavenging activity of Jeju native citrus peel during maturation. J. Kor. Soc. Food Sci. Nutr. 38, 462-469. https://doi.org/10.3746/jkfn.2009.38.4.462
  25. Kim, Y. J., Kim, Y. D., Oh, S. W., Kang, Y. J. and Lee, Y. C. 1999. Antimicrobial activities of solvent extracts from citrus sudachi juice and peel. Kor. J. Food Sci. Technol. 31, 1613-1618.
  26. Lee, Y. J., Choi, Y. H., Lee, S. Y., Park, K. J., Park, S. M., Hong, H, J. and Han, C. H. 2010. A study on the treat cause of diabetes due to dry citrus flavonoids. Kor. J. Hort. Sci. Technol. 105-106.
  27. Lee, Y. J., Kim, D. B., Cho, J. H., Bailc, O. H. and Lee, O. H. 2013. Physicochemical characteristics and antioxidant activities of bioresource juices from Jeju. Kor. J. Food Sci. Technol. 45, 293-298. https://doi.org/10.9721/KJFST.2013.45.3.293
  28. Lee, Y. M., Bae, J. H., Jung, H. Y., Kim, J. H. and Park, D. S. 2011. Antioxidant activity in water and methanol extracts from korean edible wild plants. J. Kor. Soc. Food Sci. Nutr. 40, 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  29. Moon, S. H., Assefa, A. D., Ko, E. Y. and Park, S. W. 2015. Comparison of flavonoid contents and antioxidant activity of yuzu (Citrus junos Sieb. ex Tanaka) based on harvest time. Kor. J. Hort. Sci. Technol. 33, 283-291.
  30. Nakagawa, H., Duan, H. and Takaishi, Y. 2001. Limonoids from citrus sudachi. Chem. Pharm. Bull. (Tokyo) 49, 649-651. https://doi.org/10.1248/cpb.49.649
  31. Nam, S. M., Kang, I. J. and Shin, M. H. 2015. Anti-diabetic and anti-oxidative activities of extracts from crataegus pinnatifida. J. East Asian Soc. Dietary Life 25, 270-277. https://doi.org/10.17495/easdl.2015.4.25.2.270
  32. Nii, Y., Fukuta, K., Sakai, K. and Yamamoto, S. 2004. Japanese citrus fruit (sudachi) juice is associated with increased bioavailability of calcium from whole small fish and suppressed bone resorption in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 50, 177-183. https://doi.org/10.3177/jnsv.50.177
  33. Oh, H. S. 2009. Cooking potentiality for japanese dishes using domestic citrus sudachi. Kor. J. Culin. Res. 15, 18-27.
  34. Oyaizu, M. 1986. Studies on products of browning reaction--antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutri. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  35. Park, G. H., Lee, S. H., Kim, H. Y., Jeong, H. S., Kim, E. Y., Yun, Y. W., Nam, S, Y. and Lee, B. J. 2011. Comparison in antioxidant effects of four citrus fruits. J. Fd Hyg. Saafety 26, 355-360.
  36. Rainha, N., Lima, E., Baptista, J. and Rodrigues, C. 2011. Antioxidant properties, total phenolic, total carotenoid and chlorophyll content of anatomical parts of Hypericum foliosum. J. Med. Plan. Res. 5, 1930-1940.
  37. Sengoku, T., Murata, Y., Mitamura, H., Takahashi, M. and Yoda, H. 2012. Synthesis of novel mucic acid 1,4-lactone methyl ester 3-O-ferulate related to an extractive component isolated from the peels of citrus sudachi. Tetrahed. Lett. 53, 435-437. https://doi.org/10.1016/j.tetlet.2011.11.066
  38. Shin, J. H., Lee, S. J., Seo, J. K., Chen, E. W. and Sung, N. J. 2008. Antioxidant activity of hot-water extract from yuza (Citrus junos SIEB ex TANAKA) peel. J. Life Sci. 18, 1745-1751. https://doi.org/10.5352/JLS.2008.18.12.1745
  39. Shin, K. N., Lee, H. S. and Kwon, C. S. 2011. Effects of nutrition education in type 2 diabetes mellitus on diabetes control and blood antioxidant status. J. Kor. Soc. Food Sci. Nutr. 40, 689-695. https://doi.org/10.3746/jkfn.2011.40.5.689
  40. Tsutsumi, R., Yoshida, T., Nii, Y., Okahisa, N., Iwata, S., Tsukayama, M., Hashimoto, R., Taniguchi, Y., Sakaue, H. and Hosaka, T. 2014. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr. Metab. 11, 1-14. https://doi.org/10.1186/1743-7075-11-1
  41. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  42. Yim, C. Y. 2010. Nitric oxide and cancer. Kor. J. Med. 78, 430-436.
  43. Yoo, K. M. and Hwang, I. K. 2004. In vitro effect of yuza (Citrus junos SIEB ex TANAKA) extracts on proliferation of human prostate cancer cells and antioxidant activity. Kor J. Food Sci. Technol. 36, 339-344.
  44. Yuasa, K., Tada, K., Harita, G., Fujimoto, T., Tsukayama, M. and Tsuji, A. 2012. Sudachitin, a polymethoxyflavone from citrus sudachi, suppresses lipopolysaccharide-induced inflammatory responses in mouse macrophage-like RAW264 cells. Biosci. Biotechnol. Biochem. 76, 598-600. https://doi.org/10.1271/bbb.110800
  45. Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Cited by

  1. Engl.) during fermentation vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.037
  2. (Thunb.) Engl.) extracts vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.038