• Title/Summary/Keyword: chemical composition transition

Search Result 134, Processing Time 0.027 seconds

A Study on the Thermal Properties and Plasma Resistance of Bi2O3-Al2O3-SiO2 Glass (Bi2O3-Al2O3-SiO2 유리의 열물성과 내플라즈마 특성 연구)

  • Young Min Byun;Jae Ho Choi;Won Bin Im;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • In this study, we investigated the effects of BiAlSiO glass composition on its glass forming range, thermal properties, and plasma resistance. The results showed that increasing the Al2O3 content suppressed the tendency for crystallization and hindered glass formation beyond a certain threshold. Bi2O3 was found to increase the content of non-bridging oxygen, resulting in a decrease in glass transition temperature and an increase in thermal expansion coefficient. Furthermore, the etching rate was found to improve with increasing Al2O3 content but decrease with increasing SiO2 content. It was concluded that the boiling point of fluorinated compounds should be considered to 900℃. Therefore, this study is expected to contribute to the understanding of the properties of BiAlSiO glass and its application to low temperature melting PRG compositions.

  • PDF

Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures (L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성)

  • Jun Young Park;Gun Woo No;Jung Gi Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.

Zn2+ PVC-based Membrane Sensor Based on 3-[(2-Furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one

  • Ganjali, Mohammad Reza;Zamani, Hassan Ali;Norouzi, Parviz;Adib, Mehdi;Rezapour, Morteza;Aceedy, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.579-584
    • /
    • 2005
  • The 3-[(2-furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one (FTT) was used as an excellent ionophore in construction of a $Zn^{2+}$ PVC-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 62% nitrobenzen (NB), 3% FTT and 5% sodium tetraphenyl borate (TBP). This membrane sensor shows very good selectivity and sensitivity towards $Zn^{2+}$ over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The membrane sensor revealed a great enhancement in selectivity coefficients for $Zn^{2+}$ ions, in comparison to the previously reported $Zn^{2+}$ membrane sensors. Theoretical studies also showed the selective interaction of TFF and $Zn^{2+}$ ions. The proposed membrane sensor exhibits a Nernstian behavior (with slope of 29.3 ${\pm}$ 0.3 mV per decade) over a wide concentration range (1.0 ${\times}$ $10^{-6}$-1.0 ${\times}$ $10^{-2}$) with a detection limit of 8.5 ${\times}$ $10^{-7}$ M (52 ng mL$^{-1}$). It shows relatively fast response time, in the whole concentration range ($\lt$ 20 s), and can be used for at least 10 weeks in a pH range of 3.0-7.0. The proposed membrane sensor was successfully used in direct determination of $Zn^{2+}$ ions in wastewater of industrial zinc electroplating companies, and also as an indicator electrode in titration with EDTA.

Linear Low Density Polyethylene Preparation by Titanium-Based Ziegler-Natta Catalysts (티탄이 기본인 Ziegler-Natta 촉매에 의한 선형저밀도폴리에틸렌의 제조)

  • Dong-Ho Lee;Kyung-Eun Min;Cha-Ung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.110-117
    • /
    • 1987
  • For the preparation of linear low density polyethylene (LLDPE), the copolymerization of ethylene and 1-butene was carried out with various catalysts of titanium alkoxidealkylaluminum compound in slurry phase. The effects of catalyst components, aging time, concentration of catalyst components, polymerization time and temperature on the catalytic activity and copolymer composition were examined. The properties of copolymer obtained were also considered with the correlation to the 1-butene contents. It has been found that the titanium tetra-n-butoxide-diethylaluminum chloride catalyst system was the most suitable for the production of LLDPE with higher catalytic activity, more 1-butene content and less soluble parts. The density, glass transition temperature, melting point and heat of fusion of copolymer were decreased with increasing 1-butene contents.

  • PDF

Study of Solvent Effects on the Ionization of tert-butyl Halide in MeOH-DMSO Mixtures (MeOH-DMSO 혼합용매중에서 tert-butyl halide의 이온화에 미치는 용매효과)

  • Yeol Sakong;Shi Choon Kim;Jin Sung Kim;Bon Su Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 1985
  • Rate constants and activation parameters for the methanolysis of t-butyl halide (t-BuCl, t-BuBr, t-BuI) in various MeOH-DMSO mixtures were measured by conductometric method. Taft's solvatochromic parameters, such as polarity-polarizability(SPP's), ${\pi}^{\ast}$, hydrogen bond donor (HBD) acidity, ${\alpha}$, and hydrogen bond acceptor (HBA) basicity, ${\beta}$ of the solvents, were determined by the so called solvatochromic method using five indicators. The variation of methanolysis rate with the solvent composition was discussed on the basis of the activation parameters and the correlation of the rates with the solvatochromic parameters. It is concluded that the polarity-polarizability, HBD acidity and HBA basicity of the mixtures had an effect on the ionization of t-butyl halide cooperatively, also that the specific interaction between the leaving groups and the solvents, such as ion-dipole and hydrogen bond acceptor-donor interaction, is the most important factor of solvent effects on the stabilization of transition states.

  • PDF

Kinetic Studies on the Nucleophilic Substitution Reaction of 4-X-Substituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures

  • Sung, Ryun-Youn;Choi, Ho-june;Lee, Jong-Pal;Park, Jong-Keun;Yang, Ki-Yull;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1579-1582
    • /
    • 2009
  • The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2,\;CN,\;CF_3$) with Y-substituted pyridines (Y = 3-$OCH_3,\;H,\;3-CH_3,\;4-CH_3$) in methanol-acetonitrile mixtures were measured by conductometry at 25 ${^{\circ}C}$. It was observed that the rate constant increased in the order of X = 4-$NO_2\;>\;4-CN\;>\;4-CF_3$ and the rate constant also increased in the order of Y = 4-$CH_3\;>\;3-CH_3\;>\;H\;>\;3-OCH_3$. When the solvent composition was varied, the rate constant increased in order of MeCN > 50% MeOH > MeOH. The electrophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic hydrogen and nitrogen of pyridines in ground state. Based on the transition parameters, ${\rho}_S,\;{\rho}_N,\;{\beta}_Y,\;{\rho}_{XY}$ and solvent effects, the reaction seems to proceed via $S_N$Ar-Ad.E mechanism. We also estimated the isokinetic solvent mixtures (${\rho}_{XY}$ = 0) based on cross-interaction constants, where the substituent effects of the substrate and nucleophile are compensated.

A Study on the Nonstoichiometry of the Iron Oxide System (산화철계의 비화학양론에 관한 연구)

  • Choi, Jae-Shi;Yo, Chul-Hyun;Choi, Sung-Nack
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.337-345
    • /
    • 1973
  • The nonstoichiometry of the iron oxide system has been studied by analyzing the weight loss of a sample, measured by using a quartz microbalance, in a temperature range from $0^{\circ}C$ to $1200^{\circ}C$ under oxygen pressures from $10^{2}mmHg$ to $10^{-4}mmHg$. The Y values of the formula, $FeO_{1+\gamma}$, that have been obtained by this means for various conditions of temperature and pressure in this range are considered to be more accurate than values obtained by methods requiring thste quenching of the sample before measurements are made. The plots of log Y vs $log PO_2$ (or $log Y =_n log PO_2$) show linearity and n calculated from the slope of the plot is about 1/10 at $1000^{\circ}C$, indicating a difference between the nonstoichiometric and oxidation mechanisms. The condition for the formation of stoichiometric FeO was determined to be $1200^{\circ}C$ under $10^{-3}mmHg$ of $O_2$ and the composition of the oxide under standard conditions was $FeO_{1.11185}$. As in general more oxygen dissolves into the oxide system at lower temperatures and higher oxygen pressures, the deviation from stoichiometric FeO is greater under those conditions. A comparison of the change in conductivity of the sample indicates that full phase transition does not take place with conductivity transition.

  • PDF

Phase Transition and Surface Morphological Characteristics of Intermediate Product Feitknechtite According to Aging Time during the Synthesis of Birnessite (버네사이트 합성 시 에이징 시간에 따른 중간생성물 페이크네타이트 상전이 및 표면 형태학적 특성)

  • Min, Soyoung;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.213-222
    • /
    • 2019
  • Birnessite (birnessite, $7{\AA}$ manganate, ${\delta}-MnO_2$) is a major mineral comprising manganese nodule. Various synthetic methods have been studied and evaluated because it can be used as an ion exchange agent and a battery recharging material. However, it is difficult to obtain a single birnessite phase because it does not have a stoichiometric chemical composition. Feitknechtite (${\beta}-MnOOH$) is formed as an intermediate product during birnessite synthesis and in this study, the transition of this phase to birnessite was compared by using XRD and SEM. Two different methods, Feng et al. (2004) and Luo et al. (1998), based on redox reaction were used. It was possible to obtain the impurity-free birnessite for the sample aged 60 days at $27^{\circ}C$ by Feng et al. (2004) method and 3 days at $60^{\circ}C$ by Luo et al. (1998) method. The phase transition rate of the feitknechtite phase was slower in the case of $Mg^{2+}$ doped birnessite which was synthesized by Luo et al. (1998) method, and almost single phase almost single phase birnessite was identified at high temperature. Crystal surface and morphology also confirmed the difference between the samples synthesized by two methods.

Chemical Analysis and Thermoelectric Properties of the PbSnTe Semiconductors (화학조성에 따른 PbSnTe계 반도체의 열전특성조사)

  • Oh, Kyu-Whan;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1990
  • The semiconducting $(Pb_1\;_xSn_x)_1$ $_yTe_y$, one of the low - temperature thermoelectric materials, has been prepared and its chemical composition and nonstoichiometry has been analyzed. The content of Pb in the specimens was determined by the complexometric back - titration method with EDTA and Pb(II) standard solutions. Te - content was analyzed with the redox titration method. The electrical conductivity and the thermoelectric power have also been measured by the DC 4 - probe and the heat-pulse technique, respectively. All of the specimens showed a nonstoichiometric behavior in their chemical compositions (Te excess), thus gave rise to a p - type semiconducting property, and the nonstoichoimetry became bigger as the Sn - content increased. The thermoelectric power vs. temperature results have been analyzed upon the basis of the Fermi level vs. temperature profiles in the saturation regime. The specimen of x=0.1 evolved a transition from p - to n - type property at about 670K, which has been explained by the fact that the mobility of electrons is bigger than that of holes in the temperature range of the intrinsic regime.

  • PDF

Structural Characteristics and Physical Properties of Wild Silk Fibres; Antheraea pernyi and Antheraea yamamai (야잠사의 구조특성 및 물리적 성질)

  • 권해용;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.138-146
    • /
    • 1994
  • The structural characteristics of Antheraea yamamai and Antheraea pernyi silk were investigated by using x-ray diffraction method, IR spectroscopy and polarizing microscopy. The amino acid composition, fiber density, thermal decomposition temperature and glass transition temperature were also measured for relating these physical properties to the structure in comparison with those of Bombyx mori silk fiber. There was no significant structural difference between A. yamamai and A. pernyi silk fiber on an examination of x-ray diffraction curve and IR spectrum. Both of these wild silk fibers showed double diffraction peaks at the Bragg angle 2Θ16.7˚ and 20.5˚by x-ray diffraction analysis as well as IR absorption peaks for the bending vibration of specific groups related to ala-ala amino acid sequence. On the other hand, the x-ray diffraction curve and IR spectrum of Bombyx mori silk fiber are different from those of wild silk fibers, indicating different crystal structure as well as amino acid sequences. It showed under the polarizing microscope examination that the birefringence and optical orientation factor of wild silk fibers are much lower than those of B. mori silk. Also, the surface of degummed wild silk fibers was characterized by the longitudinal stripes of microfibrils in the direction of fiber axies. The amino acid composition, which is strongly related to the fine structure and properties, was not significantly different between these two wild silk fibers. However, the alanine content was somewhat less and polar amino acid content more for A. yamamai. As a result of fiber density measurement, the specific gravities of B. mori, A. pernyi and A. yamamai were 1.355~1.356, 1.308~1.311, 1.265~1.301g/㎤ in the order, respectively. The calculated crystallinity(%) was 64% for B. mori and 51~52% for wild silk fibers, which showed same trend by IR method in spite of somewhat higher value. The thermal decomposition behaviour was examined by DSC and TGA, showing that the degradation temperature was in the order of B mori, A. prernyi and A. yamamai at around 350$^{\circ}C$. It was also observed by TGA that the decomposition seems to proceed step by step according to their specific regions in the fiber structure, resulting the difference in their thermal stabilities. The glass transition temperature was turned out to be 220$^{\circ}C$ for B. mori, 240$^{\circ}C$ A. yamamai and 255$^{\circ}C$ A. pernyi by the dynamic mechanical analysis. It is expected that the chemical properties are affected by the dynamic mechanical behavior in accordance with their structural characters.

  • PDF