• Title/Summary/Keyword: chemical adsorption

Search Result 2,228, Processing Time 0.032 seconds

Adsorption Affected by Relationship Between Pore Sizes of Activated Carbons and Physical Properties of Adsorbates (활성탄의 세공크기와 흡착질의 물리적 특성과의 연관성이 흡착에 미치는 영향)

  • Kang, Jeong-Hwa;Kwon, Jun-Ho;Kim, Sang-Won;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In this study, the relationship between the pore size distribution and the adsorption amount of adsorbates is investigated in detail. Adsorption amounts of non-polar adsorbates were greater than those of polar adsorbates because of slight negative charge on surfaces of adsorbents. The adsorption of benzene on the surface of absorbents was largely influenced by the specific pore size of $2{\sim}4$ times of benzene diameter. But in case of toluene, the adsorption of toluene was affected by pore sizes of $2{\sim}4$ times as well as $4{\sim}6$ times of the diameter of toluene. Both acetone and MEK were examined by the same method. The adsorption of acetone was influenced by pore sizes of $2{\sim}4$ times of the diameter of acetone. But acetone does not look to be built up multi-layer on those pore sizes. Since acetone molecule is small and its mobility is so fast, it is assumed that the adsorption and desorption of acetone is simultaneously occurred at the same time even at room temperature. In case of MEK, MEK was effected by pore sizes of $2{\sim}4$ times of the diameter of MEK.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation (초음파 합성법을 이용한 UiO-66의 합성 및 이산화탄소 흡착/자일렌 이성체 분리 연구)

  • Kim, Hee-Young;Kim, Se-Na;Kim, Jun;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.470-475
    • /
    • 2013
  • Zr-benzendicarboxylate structure, UiO-66 was prepared in 1-L batch scale by using a unique sonochemical-solvothermal combined synthesis method. The produced UiO-66 showed uniform particles of ca. $0.2{\mu}m$ in size with the BET surface area of $1,375m^2/g$ in high product yield (>95%). The UiO-66 showed 198 and 84 mg/g $CO_2$ adsorption capacity at 273 K and 298 K, respectively, with excellent $CO_2$ selectivity ($CO_2:N_2=32:1$) at ambient conditions. The isosteric heat of $CO_2$ adsorption varied from 33 to 25 kJ/mol as the adsorption progressed. The UiO-66 tested for xylene isomer separation in a liquid-phase batch mode confirmed preferential adsorption of the adsorbent for o-xylene over m-, and p-xylene.

Development of Adsorption Process with UiO-66 Particles for Hydrogen Purification Using Statistical Design of Experiment (통계학적 실험계획법을 이용한 수소정제용 UiO-66 흡착제 개발)

  • Lee, Hyun Sik;Kim, Da Som;Park, Ji Won;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.784-791
    • /
    • 2018
  • UiO-66 particles were synthesized under various synthesis conditions to study the adsorption of carbon dioxide for hydrogen purification. For the purpose, the design and analysis of experiments was performed using statistical design of experiment method. As the synthesis time, temperature and acetic acid amount increased, the crystallinity of UiO-66 particles increased. Especially, the amount of acetic acid was confirmed as an important factor in determining the crystallinity of the particles. The specific surface area of the particles measured by the nitrogen adsorption method also showed a similar tendency. Using the general factor analysis in the experimental design method, the main effects and interactions of major factors were analyzed. In addition, the carbon dioxide adsorption capacity was predicted using a nonlinear regression method. Then, the adsorption performance was shown through surface and contour maps for all ranges.

Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

  • Zhou, Jing-Jing;Liu, Kai-Yu;Kong, Chun-Long;Chen, Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1625-1631
    • /
    • 2013
  • We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/$Cr(NO_3)_3$. The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 $m^2/g$. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. $CO_2$, $CH_4$ and $N_2$ adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced $CO_2$ selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced $CO_2$ adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr).

Zeta-potentials of Oxygen and Nitrogen Enriched Activated Carbons for Removal of Copper Ion

  • Park, Kwan-Ho;Lee, Chang-Ho;Ryu, Seung-Kon;Yang, Xiaoping
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.321-325
    • /
    • 2007
  • The oxygen and nitrogen enriched activated carbons were obtained from modification of commercial activated carbon by using nitric acid, sodium hydroxide and urea. Zeta-potentials of modified activated carbons were investigated in relation to copper ion adsorption. The structural properties of modified activated carbons were not so much changed, but the zeta-potentials and isoelectric points were considerably changed. The zeta-potential of nitric acid modified activated carbon was the most negative than other activated carbons in the entire pH region, and the $pH_{IEP}$ was shifted from pH 4.8 to 2.6, resulted in the largest copper ion adsorption capacities compare with other activated carbons in the range of pH 3~6.5. In case of urea modified activated carbon, copper ion adsorption was larger than that of the as-received activated carbon from pH 2 to pH 6.5 even though the $pH_{IEP}$ was shifted to pH 6.0, it was due to the coordination process operated between nitrogen functional groups and copper ion. The adsorption capacity of copper ion was much influenced by zeta-potential and $pH_{IEP}$ of carbon adsorbent.

$CO_2$ adsorption over zinc oxide impregnated NaZSM-5 synthesized using rice husk ash (왕겨회재를 이용하여 합성된 NaZSM-5의 zinc oxide 함침에 의한 이산화탄소 흡착)

  • Hemalatha, Pushparaj;Ganesh, Mani;Venkatachalam, Kandan;Peng, Mei-Mei;Lee, Sung-Yong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.327-331
    • /
    • 2011
  • Zinc oxide (5, 10 and 15 wt%) impregnated NaZSM-5 zeolite synthesized using rice husk ash as silica source was tested for $CO_2$ adsorption. The materials were characterized by XRD, SEM-EDS, $CO_2$-TPD and BET techniques. The heat of the reaction (${\Delta}$Hr) derived from DSC for ZnO(10%)/NaZSM-5 was found to be 495 Btu/lb and the maximum $CO_2$ adsorption capacity of ZnO(10%)/NaZSM-5 is 140 mg/g of sorbent. Extraction of silica from the agricultural waste, rice husk and its use in the zeolite synthesis is an added advantage in this study. Hence, from the study it is concluded that zinc oxide impregnated NaZSM-5 could be treated as novel material for $CO_2$ adsorption as they were found to be regenerable, selective and recyclable.

  • PDF

Synthesis of Metal-Organic Framework material Cu-BTC and its application for $CO_2$ adsorption (유기 금속 Framework Cu-BTC의 합성 및 이산화탄소 분리 응용)

  • Peng, Mei-Mei;Hemalatha, Pushparaj;Ganesh, Mani;Venkatachalam, Kandan;Oh, Han-Seok;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.147-150
    • /
    • 2011
  • A copper-based metal organic framework (MOF) named Cu-BTC, also known as HKUST-1, was successfully synthesized by using a solvothermal method. The properties of the Cu-BTC sample were characterized with Powder X-ray diffraction (XRD) for phase structure, Thermogravimetric analysis (TGA) for thermal stability, Scanning electron microscopy (SEM) for crystal structure, and Nitrogen adsorption-desorption for pore textural structure. The analysis results displayed that the Cu-BTC sample exhibited a good crystal structure with uniform size of octahedral particles. The BET data revealed a high surface area of $1457 \;m^2g^{-1}$ and a pore volume of $0.60\; cm^3g^{-1}$. The Cu-BTCs ample was also studied for $CO_2$ adsorption and exhibited a maximum $CO_2$ adsorption capacity of 170 mg/g of the sorbent (3.8 mol/kg) at $25^{\circ}C$.

  • PDF

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Examination of an Algerian Clay in the Retention of Zinc Ions Charged in Brackish Water

  • Fadel, Ammar;Nacef, Saci
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.685-689
    • /
    • 2017
  • We studied the removal of zinc ions from synthetic brackish water by an adsorption method using natural Algerian Bentonite (NAB). The effect of the main physico chemical parameters-contact time, pH, temperature, ionic strength, clay weight and initial metal ion concentrations on the removal of $Zn^{+2}$-were investigated. The results showed that equilibrium was attained within 10 min of stirring time. The retention capacity of $Zn^{+2}$ increased with the increase of pH, the adsorbent dose and ionic strength. A modelization study showed that the adsorption follows Langmuir isotherm, while its kinetics was pseudo-second-order. Based on the results, it was concluded that NAB, which is natural and available, could be used as an alternative for the removal of zinc from saline aqueous solutions.