• Title/Summary/Keyword: chemical additives

Search Result 794, Processing Time 0.023 seconds

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.

Aquatic Toxicity Assessment of Phosphate Compounds

  • Kim, Eunju;Yoo, Sunkyoung;Ro, Hee-Young;Han, Hye-Jin;Baek, Yong-Wook;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, Pilje;Choi, Kyunghee
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.2.1-2.7
    • /
    • 2013
  • Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration ($LC_{50}$) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration ($EC_{50}$) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr $EC_{50}$ was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, $L(E)C_{50}$ was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

Application of Poultry Industry Using Methods of Environmental Management - A Study on Decreasing Soluble Metals from Poultry Litter with Chemical Additives - (환경경영 기법을 이용한 가금산업에 적용(I) - 화학제재를 첨가한 깔짚으로부터 수용성 중금속 저감에 관한 연구를 중심으로 -)

  • Choi, In-Hag;Choi, Sun;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1437-1442
    • /
    • 2009
  • Recent studies have shown that alum addition to litter results in many environmental and economic advantages, such as reductions in metal runoff, lower ammonia emission and improved poultry performance. However, no research has been conducted to evaluate the effects of different types of alum on soluble metals in poultry litter. The objective of this study was conducted to investigate changes in soluble metal from poultry litter with different types of aluminum sulfate (alum) under laboratory condition. The treatments used in this study, which were mixed in the upper 1 cm of litter or sprayed onto the litter surface, were 4 g alum, 8 g alum, 8.66 g liquid alum, 17.3 g liquid alum, 11.2 g A7 (high acid alum), and 22.4 g A7 (high acid alum)/100 g litter. Applying different types of alum to poultry litter reduced (P<0.05) concentrations of soluble Fe (9 to 54%), Cu (9 to 49%) and Zn (11 to 40%), relative to untreated litter, whereas it increased Ca and Mg (P<0.05). Mean soluble Fe and Cu levels in poultry litter from different types of alum decreased in the order: 22.4 g A7 (54% and 49%) > 17.3 g liquid alum (48% and 42%) > 8 g alum (48% and 31%) > 4 g alum (28% and 10%) > 8.6 g liquid alum (10% and 9%) > 11.2 g A7 (8.6% and 9%). Additionally, the high reduction in soluble Zn concentration was 4 g alum (40%), followed by 8 g alum (26%), 22.4 g A7 (25%), 17.3 g liquid alum (23%), 8.66 g liquid alum (18%), and 11.2 g A7 (11%), respectively. In conclusion, the current studies suggest that treating poultry litter with different types of alum can be applied to reduce soluble metal (Fe, Cu, and Zn) and to develop a production to merchandise for poultry litter that would result in reduction in pollutants from these materials. Furthermore, in order to improve environmental management in the poultry industry, the use of alum, liquid alum and high acid alum all should be provided a valid means of reducing negative environmental impact.

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode (층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할)

  • Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

Alcoholic Fermentation of Bokbunja (Rubus coreanus Miq.) Wine (복분자 발효주의 양조특성)

  • Choi, Han-Seok;Kim, Myung-Kon;Park, Hyo-Suk;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.543-547
    • /
    • 2006
  • In order to improve wine quality, the selection of yeast strain and of additives in the manufacture of Bokbunja (Rubus coreanus Miq.) wine was investigated. The chemical composition of the edible portions of Bokbunja fruits was 86.5% moisture, 0.2% crude protein, 0.9% crude fat, 6.6% crude fiber, 0.5% ash and $10^{\circ}Brix$ sugar, and was 2.99% fructose, 2.53% glucose and 0.07% sucrose in fruit extract. The predominant organic acids in the fruit were citric acid (14.57 mg/mL) and malic acid (2.24 mg/mL) with smaller amounts of shikimic, pyroglutamic and oxalic acid. During fermentation, citric and malic acid levels decreased, while formic and acetic acid were released. Saccharomyces cerevisiae KCCM 12224 (Sc-24) was more favorable for alcoholic fermentation of Bokbunja and the addition of 200 ppm of potassium metabisulphite to must was more efficient than other $SO_2$ sources with a higher overall acceptability score. Sc-24 increased alcohol production from 9.8 to 14.8% in a sugar concentration dependent manner $(18-28^{\circ}Brix)$. The color value of early stage Bokbunja must was improved by supplementing with Japanese apricot extract, but this did not influence the color value of Bokbunja wine after primary fermentation. The astringent taste of Bokbunja wine was reduced by removing the seed from the fruit. Sugar solution (50%, w/v) was used instead of sugar power to prevent the possibility of undissolved sugar due to insufficient mixing. This substitution did not influence sensory evaluation.

Effect of Nano-sized Carbon Black Particles on Lung and Circulatory System by Inhalation Exposure in Rats

  • Kim, Jong-Kyu;Kang, Min-Gu;Cho, Hae-Won;Han, Jeong-Hee;Chung, Yong-Hyun;Rim, Kyung-Taek;Yang, Jeong-Sun;Kim, Hwa;Lee, Moo-Yeol
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.282-289
    • /
    • 2011
  • Objectives: We sought to establish a novel method to generate nano-sized carbon black particles (nano-CBPs) with an average size smaller than 100 nm for examining the inhalation exposure risks of experimental rats. We also tested the effect of nano-CBPs on the pulmonary and circulatory systems. Methods: We used chemical vapor deposition (CVD) without the addition of any additives to generate nano-CBPs with a particle size (electrical mobility diameter) of less than 100nm to examine the effects of inhalation exposure. Nano-CBPs were applied to a nose-only inhalation chamber system for studying the inhalation toxicity in rats. The effect on the lungs and circulatory system was determined according to the degree of inflammation as quantified by bronchoalveolar lavage fluid (BALF). The functional alteration of the hemostatic and vasomotor activities was measured by plasma coagulation, platelet activity, contraction and relaxation of blood vessels. Results: Nano-CBPs were generated in the range of 83.3-87.9 nm. Rats were exposed for 4 hour/day, 5 days/week for 4 weeks to $4.2{\times}10^6$, $6.2{\times}10^5$, and $1.3{\times}10^5$ particles/$cm^3$. Exposure of nano-CBPs by inhalation resulted in minimal pulmonary inflammation and did not appear to damage the lung tissue. In addition, there was no significant effect on blood functions, such as plasma coagulation and platelet aggregation, or on vasomotor function. Conclusion: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of $4.2{\times}10^6$ particles/$cm^3$ in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향)

  • Lee, Gun Dae;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.655-662
    • /
    • 2017
  • Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

Characteristics of Strawberry Jam Containing Strawberry Puree (딸기 첨가 수준을 달리한 딸기잼의 품질특성)

  • Kim, Jin-Sook;Kang, Eun-Jung;Chang, Young-Eun;Lee, Ji-Hyun;Kim, Gi-Chang;Kim, Kyung-Mi
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.725-731
    • /
    • 2013
  • This study investigates the quality of strawberry jam containing different quantities of strawberry. Strawberry jam was prepared by the addition of 70-30%(w/w) strawberry puree, Sweetness, pH, total acidity, color, anthocyanin and pectin content, texture, free sugar, and organic acid content of the samples were measured. Decrease in the quantity of the strawberry puree led to a decrease in the following: total acidity(significance value p<0.05), anthocyanin, pectin, total free sugar, frutose, glucose, sucrose, and, organic acid content, namely oxalic acid, citric acid, malic acid, succinic acid, and formic acid. A texture profile analysis showed reduction in the hardness, gumminess, and chewiness of the jam. At the same time, decrease in the puree quantity also led to an increase in the sweetness, pH, L-value, a-value and b-value(significance value p<0.05) of the jam. These results promote, the consumption of fruit that are high in fruit, low in sugar, and do not contain any chemical additives.