• 제목/요약/키워드: chelatase

검색결과 4건 처리시간 0.018초

Bacillus subtilis subsp. spizizenii의 sirohydrochlorin chelatase SirB의 코발트 복합체 구조 (Cobalt complex structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subsp. spizizenii)

  • 남미선;송완석;박순철;윤성일
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.123-130
    • /
    • 2019
  • Chelatase는 tetrapyrrole에 2가 금속을 삽입하는 데 관여하는 효소로서 cobalamin, siroheme, heme, chlorophyll과 같은 금속-tetrapyrrole의 생합성에 필수적인 역할을 담당한다. SirB는 sirohydrochlorin(SHC) tetrapyrrole의 중앙부에 코발트나철을 삽입하여 코발트-SHC 또는 철-SHC를 형성하는 SHC chelatase이다. SirB의 금속 결합 기전 및 SHC 인식 기전을 구조적으로 이해하기 위해 Bacillus subtilis subsp. spizizenii에서 유래한 SirB(bssSirB)의 코발트 복합체 구조를 규명하였다. bssSirB는 N-말단 도메인(NTD)과 C-말단 도메인(CTD)으로 구성된 ${\alpha}/{\beta}$ 단량체 구조를 형성한다. bssSirB는 NTD와 CTD 사이에 서열 보존성이 높은 공동을 지니며 NTD의 histidine 잔기 2개를 이용하여 공동 상단에서 코발트 이온과 상호작용한다. 또한 구조 비교 분석 결과 bssSirB는 공동 내에 SHC 분자를 수용하는 것으로 판단된다. 이러한 구조적 발견에 기초하여 bssSirB의 공동은 SHC의 코발트 삽입이 이뤄지는 활성 부위임을 제안한다.

Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

  • Park, Sang-Ho;Choi, Hoseong;Kim, Semin;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.371-376
    • /
    • 2016
  • Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.