• Title/Summary/Keyword: charging

Search Result 2,515, Processing Time 0.028 seconds

Charging Characteristics of Electrostatic Sprayer Applied Square Pulse (구형파 펄스를 인가한 정전분무 장치의 대전량 특성)

  • 박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.573-578
    • /
    • 2003
  • In this study, new type of induction charging system for electrostatic spraying was manufactured and proposed to improve the electrical safety and charging efficiency. And parameters of proposed system to generate the maximum deposition current with electrical safety were selected and investigated. The selected parameters were frequency of square pulse and thickness of insulation material, outer diameter of device and thickness and positions of electrode. Charging quantity of water drop was measured by deposition current detected from sensing plate indirectly. The maximum deposition current for each parameter were 3.5[uA] at the frequency of 15[kHz] and thickness of 0.25[mm] insulating layer. And maximum deposition currents were 2.8[uA] and 3.0[uA] at 25[mm] outer diameter of charging device and 0.25[mm] thickness of electrode each. Effects of electrode position from spraying nozzle on deposition current was a little.

Smart Phone RF Wireless Charging with 5.8-GHz Microwave Wireless Power Receiver (5.8-GHz무선전력수신기를 이용한 스마트폰 RF 무선충전)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.25-28
    • /
    • 2021
  • In this paper, we studied smart phone RF wireless charging with 5.8-GHz microwave wireless power receiver. The dc output of the receiver connected to super capacitor and DC-DC converter for charging a smart phone. This configuration stably supplies 5V and current for charging it. Studies show that the more receivers are used at close range, the higher the received voltage values and the larger the capacity of the super capacitor, the longer the charging time. The present 5.8-GHz 1W wireless power transmission system is not enough for charging a smartphone mainly due to the lack of current of the receiver.

Method for improving the capacitor charging speed of portable high voltage device (휴대용 고압 기기에 적합한 커패시터 충전 속도 향상 방안)

  • Kim, Chul-Jin;Hong, Sung-Ho;Lee, Soo-Rang;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.215-217
    • /
    • 2007
  • This paper proposes the method to improve the charging speed of high voltage capacitor used in the portable medical device. The feedback control method with microprocessor was used to detect charging time and control charging voltage. The result shows that the proposed method is more efficient than only voltage check method with typical charging sequence control.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

Charging Behavior Analysis of Electric Vehicle (전기자동차 충전행태분석)

  • PARK, Kyuho;JEON, Hyeonmyeong;JUNG, Kabchae;SON, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • Electric vehicles, which are attracting attention as eco-friendly vehicles, have been increasing in number since 2011 in Korea. The purpose of this study is to analyze the efficient operation of existing charging stations and factors to consider when installing additional charging stations based on the case of Jeju Island where the electric vehicle penetration rate is high and the charging infrastructure is relatively well established. The characteristics of using electric car charging stations by region, type of facility, and time of day are analyzed. As a result of analyzing the frequency of using the charger installed in Jeju Island, the utilization of both the fast charger and the slow charger is found to be concentrated in a specific area. The usage rate of charger installed in a business facility and a public parking lot is high in both fast charger and slow charger. However, according to the usage rate by time of day, the fast charger has a high utilization rate throughout the afternoon, while the use of a slow charger is concentrated in the morning. In order to enable users to utilize the electric vehicle charging station efficiently, it is necessary to provide a publicity guide for the charging station having a low utilization rate, a notice for using the charger, and a notification of completion of charging. Considering the charging demand, the area where the charger is not yet installed should be considered as the area to install the charger, and in addition, the additional installation should be considered in the area and the facility where the amount of charge is large. Service improvement is expected to be possible by utilizing actual electric vehicle charging behavior analysis result.

Design of the Protocol for Wireless Charging of Mobile Emotional Sensing Device (모바일 감성 센싱 단말기의 무선 충전을 위한 프로토콜 설계 및 구현)

  • Kim, Sun-Hee;Lim, Yong-Seok;Lim, Seung-Ok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • In order to supply emotion service depending on user's emotional change in a mobile environment, various researches have been carried. This paper discusses a protocol for wireless charging and an embedded platform of the mobile emotional sensing device which supports that. Wireless charging process relieves user's vexatious task to charge the emotional sensing device. To support wireless charging, there are one basestation and several mobile devices. Basestation coordinates and controls the devices over wireless communication, as well as supplies energy. For 1:N communication we defines the network whose superframe is classified into four categories: a network join superframe, a charging request superframe, a charging superframe and an inactive superframe. Physical layer provides how to supply energy to the devices and communicate physically. Mobile device is equipped with energy charged circuits, which correspond with the defined energy supplying method, as well as bidirectional communication circuits. Mobile device monitors and analyzes its own battery status, and is able to send a request packet to basestation. Therefore, it can be charged before its battery is exhausted without user's perception.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

A Study on EV Charging Scheme Using Load Control

  • Go, Hyo-Sang;Cho, In-Ho;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1789-1797
    • /
    • 2017
  • It is necessary to charge electric vehicles in order to drive them. Thus, it is essential to have electric vehicle charging facilities in place. In the case of a household battery charger, the power similar to that consumed by a household with a basic contract power of 3kW is consumed. In addition, many consumers who own an electric vehicle will charge their vehicles at the same time. The simultaneous charging of electric vehicles will cause the load to increase, which then will lead to the imbalance of supply and demand in the distribution system. Thus, a smart charging scheme for electric vehicles is an essential element. In this paper, simulated conditions were set up using real data relating to Korea in order to design a smart charging technique suitable for the actual situation. The simulated conditions were used to present a smart charging technique for electric vehicles that disperses electric vehicles being charged simultaneously. The EVs and Smart Charging Technique are modeled using the Electro Magnetic Transients Program (EMTP).

Charging the Assured-Bandwidth Service (최저대역보장형 서비스에 대한 과금)

  • 이훈;이광휘
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.179-179
    • /
    • 2004
  • In the near future we can expect a change in charging the Internet service. The flat charging maybe replaced with a usage-based charging. In line with this movement, we propose a method of charging the assured-quality Internet services for the next generation network by introducing a UBC (usage-based charging) scheme over the conventional flat charging platform. First, we investigate the attribute of elastic traffic generated by assured services in IP network. Next, we propose a new method to relate the bandwidth usage with the pricing for the elastic traffic, which is based partially on the usage rate of the network bandwidth. Next, we propose a charging function for elastic traffic, which is applicable to any type of assured Internet services. Finally, we discuss the implication of the work via simple numerical experiments.

Charging the Assured-Bandwidth Service (최저대역보장형 서비스에 대한 과금)

  • Seok, Seung-Hak;Lee, Hoon;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.21-28
    • /
    • 2004
  • In the near future we can expect a change in charging the Internet service. The flat charging maybe replaced with a usage-based charging. In line with this movement, we propose a method of charging the assured-quality Internet services for the next generation network by introducing a UBC (usage-based charging) scheme over the conventional flat charging platform. First, we investigate the attribute of elastic traffic generated by assured services in IP network. Next, we propose a new method to relate the bandwidth usage with the pricing for the elastic traffic, which is based partially on the usage rate of the network bandwidth. Next, we propose a charging function for elastic traffic, which is applicable to any type of assured Internet services. Finally, we discuss the implication of the work via simple numerical experiments.