• Title/Summary/Keyword: charging

Search Result 2,515, Processing Time 0.027 seconds

Suggestions for Safety Improvement of CNG Bus Based on Accident and Failure Analysis (CNG버스 사고원인 분석에 근거한 안전성 향상 방안에 대한 연구)

  • Yoon, Jae-Kun;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Three failure cases of CNG composite vessels were reported since after January 2005. The 1st and 2nd accidents were indebted to vessel defect and installation mistake. The 3rd was caused by gas leak at pipe connections. In this paper various aspects were studied based on information of the three failure analysis, which must be improved for better safety of the CNG bus system. Overpressure region caused by vessel explosion was theoretically predicted and also assessed by PHAST program. Explosion of 120 l vessel under 20 MPa is equivalent to 1.2 kg TNT explosion. The predicted value by PHAST was more serious than theoretical one. However, actual consequence of explosion was much less than both of the predicted consequences. Since the CNG vessel was designed by the performance based design methodology, it is difficult to verify whether the required process and tests were properly conducted or not after production. If material toughness is not enough, the vessel should be weak in brittle fracture at early in the morning of winter season since the metal temperature can be lower than the transition temperature. If autofrettage pressure is not correct, fatigue failure due to tensile stress during repeated charging is possible. One positive aspect is that fire did not ocurred after vessel failure. This may be indebted to fast diffusion of natural gas which hindered starting fire.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure (비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.14-18
    • /
    • 2019
  • The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Economical Analysis of the PV-linked Residential ESS using HOMER in Korea (HOMER를 이용한 PV 연계 가정용 ESS의 경제성 분석)

  • Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • Europe and North America are paying attention to residential ESS(Energy Storage System) that can manage energy efficiently. The ESS is a system that stores and manages the electric power by charging and discharging the battery. The ESS is generally used in conjunction with photovoltaic systems. The ESS supplies the load of the power generation time and stores the remaining PV power to supply the load at the non-power generation time. However, due to the high price of residential ESS, low electric rates and increasing block rates, there is no market of residential ESS in Korea. This paper reviews the price condition and the capacity for applying PV and residential ESS to household of apartments using HOMER in Korea.

Performance Evaluation of Aqueous Redox Flow Battery using Quinone Redox Couple Dissolved in Ammonium Chloride Electrolyte (염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가)

  • Lee, Wonmi;Chung, Kun Yong;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.239-243
    • /
    • 2019
  • In this study, anthraquinone-2,7-disulfonic acid (2,7-AQDS) is used as negative active material and Tiron is used as positive active material for aqueous redox flow battery (RFB). In previous results that used the 2,7-AQDS and Tiron, sulfuric acid ($H_2SO_4$) was a supporting electrolyte. However, in this study, ammonium chloride ($NH_4Cl$) is suggested as the electrolyte for the first time. By changing the supporting electrolyte from $H_2SO_4$ to $NH_4Cl$, the cell voltage of RFB is improved from 0.76 V to 1.01 V. To investigate the effect of $NH_4Cl$ supporting electrolyte of the performance of RFB, the full-cell tests of RFB using 2,7-AQDS and Tiron that are dissolved in $NH_4Cl$ supporting electrolyte are carried out, while cut-off voltage range is a main parameter to determine their performance. When the cut-off voltage range is 0.2~1.6 V, the hydrogen evolution occurs during charging step. To address the side reaction effect, the cut-off voltage range is changed to 0.2~1.2 V. When the revised cut-off voltage range is used and the current density of $40mA/cm^2$ is applied, hydrogen evolution is not observed and the optimal RFB shows the charge efficiency of 99% and discharge capacity of 3.3 Ah/L at 10cycle.

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation (리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화)

  • Park, Yiseul
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.884-889
    • /
    • 2018
  • In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.