• Title/Summary/Keyword: charge trap flash (CTF) memory

Search Result 19, Processing Time 0.047 seconds

Charge trapping characteristics of the zinc oxide (ZnO) layer for metal-oxide semiconductor capacitor structure with room temperature

  • Pyo, Ju-Yeong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.310-310
    • /
    • 2016
  • 최근 NAND flash memory는 높은 집적성과 데이터의 비휘발성, 낮은 소비전력, 간단한 입, 출력 등의 장점들로 인해 핸드폰, MP3, USB 등의 휴대용 저장 장치 및 노트북 시장에서 많이 이용되어 왔다. 특히, 최근에는 smart watch, wearable device등과 같은 차세대 디스플레이 소자에 대한 관심이 증가함에 따라 유연하고 투명한 메모리 소자에 대한 연구가 다양하게 진행되고 있다. 대표적인 플래시 메모리 소자의 구조로 charge trapping type flash memory (CTF)가 있다. CTF 메모리 소자는 trap layer의 trap site를 이용하여 메모리 동작을 하는 소자이다. 하지만 작은 window의 크기, trap site의 열화로 인해 메모리 특성이 나빠지는 문제점 등이 있다. 따라서 최근, trap layer에 다양한 물질을 적용하여 CTF 소자의 문제점을 해결하고자 하는 연구들이 진행되고 있다. 특히, 산화물 반도체인 zinc oxide (ZnO)를 trap layer로 하는 CTF 메모리 소자가 최근 몇몇 보고 되었다. 산화물 반도체인 ZnO는 n-type 반도체이며, shallow와 deep trap site를 동시에 가지고 있는 독특한 물질이다. 이 특성으로 인해 메모리 소자의 programming 시에는 deep trap site에 charging이 일어나고, erasing 시에는 shallow trap site에 캐리어들이 쉽게 공급되면서 deep trap site에 갇혀있던 charge가 쉽게 de-trapped 된다는 장점을 가지고 있다. 따라서, 본 실험에서는 산화물 반도체인 ZnO를 trap layer로 하는 CTF 소자의 메모리 특성을 확인하기 위해 간단한 구조인 metal-oxide capacitor (MOSCAP)구조로 제작하여 메모리 특성을 평가하였다. 먼저, RCA cleaning 처리된 n-Si bulk 기판 위에 tunnel layer인 SiO2 5 nm를 rf sputter로 증착한 후 furnace 장비를 이용하여 forming gas annealing을 $450^{\circ}C$에서 실시하였다. 그 후 ZnO를 20 nm, SiO2를 30 nm rf sputter로 증착한 후, 상부전극을 E-beam evaporator 장비를 사용하여 Al 150 nm를 증착하였다. 제작된 소자의 신뢰성 및 내구성 평가를 위해 상온에서 retention과 endurance 측정을 진행하였다. 상온에서의 endurance 측정결과 1000 cycles에서 약 19.08%의 charge loss를 보였으며, Retention 측정결과, 10년 후 약 33.57%의 charge loss를 보여 좋은 메모리 특성을 가지는 것을 확인하였다. 본 실험 결과를 바탕으로, 차세대 메모리 시장에서 trap layer 물질로 산화물 반도체를 사용하는 CTF의 연구 및 계발, 활용가치가 높을 것으로 기대된다.

  • PDF

Erasing Characteristics Improvement in $HfO_2$ Charge Trap Flash (CTF) through Tunnel Barrier Engineering (TBE) (Tunnel Barrier Engineering (TBE)를 통한 $HfO_2$ Charge Trap Flash (CTF) Memory의 Erasing 특성 향상)

  • Kim, Kwan-Su;Jung, Myung-Ho;Park, Goon-Ho;Jung, Jong-Wan;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.7-8
    • /
    • 2008
  • The memory characteristics of charge trap flash (CTF) with $HfO_2$ charge trap layer were investigated. Especially, we focused on the effects of tunnel barrier engineering consisted of $SiO_2/Si_3N_4/SiO_2$ (ONO) stack or $Si_3N_4/SiO_2/Si_3N_4$ (NON) stack. The programming and erasing characteristics were significantly enhanced by using ONO or NON tunnel barrier. These improvement are due to the increase of tunneling current by using engineered tunnel barrier. As a result, the engineered tunnel barrier is a promising technique for non-volatile flash memory applications.

  • PDF

Characterization of the Vertical Position of the Trapped Charge in Charge-trap Flash Memory

  • Kim, Seunghyun;Kwon, Dae Woong;Lee, Sang-Ho;Park, Sang-Ku;Kim, Youngmin;Kim, Hyungmin;Kim, Young Goan;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.167-173
    • /
    • 2017
  • In this paper, the characterization of the vertical position of trapped charges in the charge-trap flash (CTF) memory is performed in the novel CTF memory cell with gate-all-around structure using technology computer-aided design (TCAD) simulation. In the CTF memories, injected charges are not stored in the conductive poly-crystalline silicon layer in the trapping layer such as silicon nitride. Thus, a reliable technique for exactly locating the trapped charges is required for making up an accurate macro-models for CTF memory cells. When a programming operation is performed initially, the injected charges are trapped near the interface between tunneling oxide and trapping nitride layers. However, as the program voltage gets higher and a larger threshold voltage shift is resulted, additional charges are trapped near the blocking oxide interface. Intrinsic properties of nitride including trap density and effective capture cross-sectional area substantially affect the position of charge centroid. By exactly locating the charge centroid from the charge distribution in programmed cells under various operation conditions, the relation between charge centroid and program operation condition is closely investigated.

The Analysis of Gate Controllability in 3D NAND Flash Memory with CTF-F Structure (CTF-F 구조를 가진 3D NAND Flash Memory에서 Gate Controllability 분석)

  • Kim, Beomsu;Lee, Jongwon;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.774-777
    • /
    • 2021
  • In this paper, we analyzed the gate controllability of 3D NAND Flash Memory with Charge Trap Flash using Ferroelectric (CTF-F) structure. HfO2, a ferroelectric material, has a high-k characteristic besides polarization. Due to these characteristics, gate controllability is increased in CTF-F structure and on/off current characteristics are improved in Bit Line(BL). As a result of the simulation, in the CTF-F structure, the channel length of String Select Line(SSL) and Ground Select Line(GSL) was 100 nm, which was reduced by 33% compared to the conventional CTF structure, but almost the same off-current characteristics were confirmed. In addition, it was confirmed that the inversion layer was formed stronger in the channel during the program operation, and the current through the BL was increased by about 2 times.

Thickness dependency of MAHONOS ($Metal/Al_2O_3/HfO_2/SiO_2/Si_3N_4/SiO_2/Si$) charge trap flash memory

  • O, Se-Man;Yu, Hui-Uk;Kim, Min-Su;Lee, Yeong-Hui;Jeong, Hong-Bae;Jo, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.34-34
    • /
    • 2009
  • The electrical characteristics of tunnel barrier engineered charge trap flash (TBE-CTF) memory with $SiO_2/Si_3N_4/SiO_2/Si$ engineered tunnel barrier, $HfO_2$ charge trap layer and $Al_2O_3$ blocking oxide layer (MAHONOS) were investigated. The energy bad diagram was designed by using the quantum-mechanical tunnel model (QM) and then the CTF memory devices were fabricated. As a result, the best thickness combination of MAHONOS is confirmed. Moreover, not enhanced P/E speed (Program: about $10^6$ times) (Erase: about $10^4$ times) but also enhanced retention and endurance characteristics are represented.

  • PDF

Investigation of Endurance Degradation in a CTF NOR Array Using Charge Pumping Methods

  • An, Ho-Myoung;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.25-28
    • /
    • 2016
  • We investigate the effect of interface states on the endurance of a charge trap flash (CTF) NOR array using charge pumping methods. The endurance test was completed from one cell selected randomly from 128 bit cells, where the memory window value after 102 program/erase (P/E) cycles decreased slightly from 2.2 V to 1.7 V. However, the memory window closure abruptly accelerated after 103 P/E cycles or more (i.e. 0.97 V or 0.7 V) due to a degraded programming speed. On the other hand, the interface trap density (Nit) gradually increased from 3.13×1011 cm−2 for the initial state to 4×1012 cm−2 for 102 P/E cycles. Over 103 P/E cycles, the Nit increased dramatically from 5.51×1012 cm−2 for 103 P/E cycles to 5.79×1012 cm−2 for 104 P/E cycles due to tunnel oxide damages. These results show good correlation between the interface traps and endurance degradation of CTF devices in actual flash cell arrays.

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun;Joe, Sung-Min;Yun, Jang-Gn;Shin, Hyung-Cheol;Park, Byung-Gook;Park, Sang-Sik;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.

Enhancement of nonvolatile memory of performance using CRESTED tunneling barrier and high-k charge trap/bloking oxide layers (Engineered tunnel barrier가 적용되고 전화포획층으로 $HfO_2$를 가진 비휘발성 메모리 소자의 특성 향상)

  • Park, Goon-Ho;You, Hee-Wook;Oh, Se-Man;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.415-416
    • /
    • 2009
  • The tunnel barrier engineered charge trap flash (TBE-CTF) non-volatile memory using CRESTED tunneling barrier was fabricated by stacking thin $Si_3N_4$ and $SiO_2$ dielectric layers. Moreover, high-k based $HfO_2$ charge trap layer and $Al_2O_3$ blocking layer were used for further improvement of the NVM (non-volatile memory) performances. The programming/erasing speed, endurance and data retention of TBE-CTF memory was evaluated.

  • PDF