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Abstract—In this paper, the characterization of the 
vertical position of trapped charges in the charge-trap 
flash (CTF) memory is performed in the novel CTF 
memory cell with gate-all-around structure using 
technology computer-aided design (TCAD) simulation. 
In the CTF memories, injected charges are not stored 
in the conductive poly-crystalline silicon layer in the 
trapping layer such as silicon nitride. Thus, a reliable 
technique for exactly locating the trapped charges is 
required for making up an accurate macro-models for 
CTF memory cells. When a programming operation is 
performed initially, the injected charges are trapped 
near the interface between tunneling oxide and 
trapping nitride layers. However, as the program 
voltage gets higher and a larger threshold voltage 
shift is resulted, additional charges are trapped near 
the blocking oxide interface. Intrinsic properties of 
nitride including trap density and effective capture 
cross-sectional area substantially affect the position of 
charge centroid. By exactly locating the charge 
centroid from the charge distribution in programmed 
cells under various operation conditions, the relation 
between charge centroid and program operation 
condition is closely investigated.     
 
Index Terms—Charge-trap flash memory, TCAD, 

macro modeling, silicon nitride, charge centroid, 
charge distribution  

I. INTRODUCTION 

Charge-trap flash (CTF) is replacing the floating-gate 
(FG) flash memory for high-density integration and low-
power operation. In the CTF memory cells, the injected 
charges are not stored in a polycrystalline silicon (poly-
Si) conductive layer but in the trapping layer such as 
silicon nitride (Si3N4). The distribution of trapped 
charges affects the memory operation of individual cells 
and needs to be considered in constructing the accurate 
macro models of CTF memory cells. Although several 
experiment results have been reported in the previous 
literature [1-5], the relation between charge distribution 
and device operation has not been clearly studied yet. In 
this study, we trace the locations of the trapped charges 
in the CTF memory cell by device simulations and 
experimental results in cooperation.  

II. SIMULATION AND EXPERIMENTS 

For device simulation, a gate-all-around (GAA) 
channel CTF memory cell is designed by a commercial 
TCAD tool [6]. In order to consider more realistic 
circumstances than dealing with a single cell, three 
memory cells are connected in series between one string 
select line (SSL) and one ground select line (GSL), 
which make up a short NAND flash bitline (BL) as 
shown in Fig. 1(a) and (b). Fig. 1(a) and (b) show the 
circuit symbol of the simple NAND string with three 
wordlines (WLs) and the simulated structure, 
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respectively. In the device simulation, the array structure 
in Fig. 1(b) is rotated about the axis along the bottom 
(dotted line in the figure) so that the channel is made to 
be very thin Si shell on the oxide core. Based on the 
simulated structure, the GAA-channel CTF memory cells 
have been fabricated. The oxide-nitride-oxide-nitride-
oxide (ONONO) dielectric layers have thicknesses of 
2/2/2/6/6 nm, from bottom to top. The bottom ONO stack 
is designed for bandgap engineering (BE) to boost the 
program and erase (P/E) operation speeds [7, 8]. The 
diameter of the nanowire channel is 40 nm. Ion 
implantation was not performed for source and drain 
(S/D) junctions so that the virtual S/D are formed by the 
gate-to-channel fringing electric field instead [9-11]. 

III. RESULTS AND DISCUSSION 

In order to locate the charge centroid from the relation 
with charge distribution, the SONONOS CTF memory 
cells were simulated as shown in Fig. 2(a). Fig. 2(b) 
shows the transfer curves of the memory cell at the 
center of the string in Fig. 2(a) before and after the 
program operation. The charge centroid is calculated 
from the charge distribution inside the programmed cell 
by mathematical extraction through Eqs. (1, 2). 
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Here, Tn is the thickness of nitride trapping layer, Q(x) 

is the trapped charge density per unit volume, as a 
function of vertical distance x. Q is the density of trapped 
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(b) 

Fig. 1. NAND string used in the simulation (a) Circuit symbol,
(b) Simulated structure and materials. 

 

 

(a) 
 

 

(b) 

Fig. 2. Program operation on the cell at the center (a) Density 
of electrons trapped in the charge trapping layer, (b) Transfer 
curves of the GAA BE SONOS flash memory cell before and 
after program. 

 

 

Fig. 3. Distributions of the trapped charges in the vertical 
direction inside nitride trapping layer obtained at different 
program times.  
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charges per unit area throughout the entire Si3N4 layer.  
Fig. 3 demonstrates the distributions of the trapped 

charges inside the nitride trapping layer depending on 
program time. The program voltage (VPGM) was 16 V and 
the pulse durations were 10 µs, 100 µs, 1 ms, and 10 ms. 
As the pulse gets longer, the threshold voltage shift (ΔVT) 
becomes larger. The total length of 6 nm in the figure 
corresponds to the thickness of nitride trapping layer. 
The left-side boundary is the interface between tunneling 
oxide and nitride charge trap layer and the right-side one 
is that between nitride and the blocking oxide.  

Fig. 4 depicts the location of charge centroid as a 
function of ΔVT at different VPGM’s. As shown in the 
figure, the charge centroid migrates from the bottom 
oxide side to the top oxide side. It is notable that the 
location of charge centroid depends only on ΔVT and is 
not affected by VPGM. In other words, the same ΔVT 
obtained from different program voltages leads to the 
same location, which agrees with the previous results 
[12-14]. However, xcentroid is substantially affected by the 
intrinsic properties of the trapping nitride layer. When 
the capture cross-sectional area is large, the injected 
charges are trapped near the tunnel oxide, which means 
that the effective capacitance becomes small. On the 
other hand, in case of small capture cross-sectional area, 
the programmed charges are located near the blocking 
oxide, farther from the channel, since the trapping 
probability gets smaller. The dependence of distribution 
of trapped charges on capture cross-sectional area is 
shown in Fig. 5(a). From the xcentroid’s extracted from the 
distributions in Fig. 5(a) by Eqs. (1, 2) are depicted in 
Fig. 5(b).  

Fig. 6 depicts the charge centroid as a function of ΔVT. 
As the trap density is low (black square line), the 
programmed charges are distributed relatively farther 
from the tunneling oxide interface. On the other hand, in 
case of high trap density, the distribution is pulled toward 
the tunneling oxide interface. It should be more probable 
for the electrons to be trapped near the tunneling oxide 
interface before travelling across the nitride layer and 
reaching the nitride/blocking oxide interface as the trap 
density becomes higher.  

In case of low trap density, the trap sites near the 
tunneling oxide/nitride interface are more readily 
occupied by the program electrons, and additional 
charges are not likely to have a high probability to 
occupy the energy states of the nitride traps. Instead, the 
surplus program electrons are drifted to the deeper nitride 
region. Consequently, xcentroid shows an abrupt shift. Fig. 
7 shows this process schematically where Jtrap is trapping 

 

Fig. 4. Location of centroid of the trapped electrons in the 
nitride layer as a function of ΔVT at different VPGM’s.  
 

 

(a) 
 

 

(b) 

Fig. 5. Effects of capture cross-sectional area (a) Distributions 
of programmed charges as a function of distance, (b) xcentroid as 
a function of ΔVT at different capture cross sections (small area: 
5×10-18 cm2, large area: 1×10-15 cm2).  
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current density, Jem is emission current density, Ji is 
electron current density incoming to the ith nitride unit 
volume, and Ji+1 is electron current density outgoing 
from the nitride unit volume. In short, under low-trap-
density condition, Ji+1 becomes larger compared with the 
case of high-trap-density condition and the distribution of 
trapped electrons becomes wider and changes faster.  

V. CONCLUSIONS 

In this work, we closely investigated the relation 
among charge distribution, charge centroid, and program 
operation conditions. On the initial stage of the program, 
charge centroid is located between tunneling oxide and 
the center of nitride charge trap layer. The charge 
centroid moves toward the blocking oxide since a 
considerable number of additional program charges are 

trapped farther from the tunneling ONO-nitride interface 
as the program voltage gets higher. Also, it has been 
confirmed that charge centroid has higher dependence on 
program voltage than program time. Thus, longer charge 
centroid shift comes with the larger threshold voltage 
shift resulted from higher program voltage rather than 
longer program time. Further, it has been proven that 
effective capture cross-sectional area and trap density 
play an important role in determining the charge centroid. 
Both properties can be controlled by process conditions 
even though the base materials are the same. Capture 
cross-sectional area and trap density act in the same 
manner that higher values are more effective in 
distributing the trapped charges closer to the tunneling 
oxide/nitride interface. The accurate charge centroid 
model will make a better way to design processing 
conditions and operating schemes for precise allocation 
of the threshold voltages for multi-level/triple-level/X-
level cell operations.   
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