• Title/Summary/Keyword: charge collection

Search Result 182, Processing Time 0.017 seconds

Soft Error Rate Simulator for DRAM (DRAM 소프트 에러율 시뮬레이터)

  • Shin, Hyung-Soon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.55-61
    • /
    • 1999
  • A soft error rate (SER) simulator for DRAM was developed. In comparison to the other SER simulator using device simulator or Monte Carlo simulator, the proposed simulator substantially reduced the CPU time using an analytical model for the alpha-particle-induced charge collection. By analysing the soft error modes in DRAM, the bit-bar mode was identified as the main cause of soft error. Using the new SER simulator, SER of 256M DRAM was investigated and it was found that the storage capacitance had a 5fF margin.

  • PDF

Collection Efficiency of Electrostatic Precipitator using Moment Method (모멘트 방법을 이용한 전기집진기의 집진 효율)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.345-353
    • /
    • 2002
  • A study of polydispersed aerosol dynamics by Electrostatic Precipitator (ESP) was carried out. The log-normal particle size distribution was assumed and moment method was considered. In order to apply moment method in Deutsch-Anderson equation, Cunningham slip correction factor and Cochet's charge equation were simplified for certain range of particle size. The three parameters, which explain the particle size distribution, such as total number concentration, geometric mean diameter, and geometric standard deviation were considered to derive the analytic solution. The obtained solution was compared with available numerical results (Bai et al., 1995). The comparison of the numerical and analytic results showed a good agreement.

Study on the Fine Particle Charging Characteristics with the Electrohydrodynamic Atomization (전기 수력학적 방법을 이용한 미세 입자의 하전 특성에 관한연구)

  • 안진홍;김광영;윤진욱;안강호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.289-294
    • /
    • 2001
  • A well defined electro-spraying and electro-static precipitator(ESP) experiment is carried out to investigate the charging characteristics of the submicron particles and the monodisperse particles. The basic idea is that the highly charged electro-sprayed droplets will be produced into the gas when the Coulombic repulsive force on the surface is higher than the surface tension of the spraying liquid. During this process many highly charged smaller droplets or ions, if the droplets are completely dried out, will be produced in the space. These charged species will be attached ion the particles and then eventually charge the particles. These charged particles will be easily collected with ESP. The experimental results show that the atomizer generated particles with geometric mean diameter (GMD) of 62nm are charged more than 90% even at the mean face velocity of 2.5m/s at the charging zone.

  • PDF

An Investigation of Citizen's Attitude to the Treatment of Food Waste (음식물 쓰레기 처리에 관한 시민의식 조사)

  • 장성호;박진식
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 1999
  • A questionary survey was conducted to investigate citizen's attitude to the treatment of food wastes in Miryang city. In this study, collection effectives was 87.8%, as 281 individuals among 320 individuals. After volume-base charge system, 86.8% of answers perform source separation and 60.9% of respondents separate everything of recycle goods. The majority of respondents discharge food waste using standard envelope. The biggest problems for deposition of the food wastes are offensive odor and worm for reasons of sanitation. Almost citizens think that the period of deposition suit from two days to three days. More than 90.0% of the citizens recognized that compost products made from food wastes and recognition of the people for the composting and composting facilities was affirmative. Majority of the respondents thought that the administration and the provincial government need activity publicity for the source separation fixations of the food wastes.

  • PDF

Performance Test of Air Filter Media (필터여재의 성능평가)

  • Ahn, K.H.;Bae, G.N.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 1994
  • Filter media performance was evaluated using monodisperse NaCl particles with Differential Mobility Analyzer and Ultrafine Condensation Particle Counter. Low or medium performance filters show that the most penetrating particles size(MPPS) is around $0.3{\mu}m$ in diameter and is shifted to smaller sizes as the filter face velocity increases. However, HEPA and ULPA filters show MPPS is around $0.15{\mu}m$ in diameter and is also shifted to $0.1{\mu}m$ in diameter as the face velocity increases. In case of electret filter, the MPPS is found around $0.04{\mu}m$ region for Boltzmann charge equilibrium particles. There is a tendency of strong collection efficiency decrease for large particles as the face velocity increases on the contrary to the other filters. One of the medium performance filter efficiency was compared with filtration theory and the good agreetment was found in the experimental range.

  • PDF

Recent Progress on the Application of Atomic Layer Deposition for Lithium Ion Batteries (원자층 증착법을 적용한 리튬 이온 전지 연구 동향)

  • Kim, Dong Ha;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.170-176
    • /
    • 2016
  • Lithium-ion batteries (LIBs) are rapidly improving in capacity and life cycle characteristics to meet the requirements of a wide range of applications, such as portable electronics, electric vehicles, and micro- or nanoelectro-mechanical systems. Recently, atomic layer deposition (ALD), one of the vapor deposition methods, has been explored to expand the capability of LIBs by producing near-atomically flat and uniform coatings on the shell of nanostructured electrodes and membranes for conventional LIBs. In this paper, we introduce various ALD coatings on the anode, cathode, and separator materials to protect them and improve their electrochemical and thermomechanical stability. In addition, we discuss the effects of ALD coatings on the three-dimensional structuring and conduction layer through activation of electrochemical reactions and facilitation of fluent charge collection.

Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells

  • Kim, Solee;Kim, Young Chai;Oh, Seong-Geun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.350-356
    • /
    • 2015
  • The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and $NH_4OH$ was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Fabrication of Virtual Frisch-Grid CdZnTe ${\gamma}$-Ray Detector (가상 Frisch-그리드를 이용한 CdZnTe 감마선 소자 제작)

  • Park, Chansun;Kim, Pilsu;Cho, PyongKon;Choi, Jonghak;Kim, Jungmin;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • Large volume of $6{\times}6{\times}12mm^3$ CdZnTe ${\gamma}$-ray detector was fabricated with CdZnTe single crystals grown by Traveling Heater Method (THM) to evaluate the energy resolution of 662 keV in $^{137}Cs$. Hole tailing effect which originated from the large mobility difference in electron and hole degrade energy resolution of radiation detector and its effects become more severe for a large volume detectors. Generally, single carrier collection technique is very useful method to remove/minimize hole tailing effect and thereby improvement in energy resolution. Virtual Frisch-grid technique is also one of single charge collection method through weighting potential engineering and it is very simple and easily applicable one. In this paper, we characterized CZT detector grown by THM and evaluated the effectiveness of virtual Frisch-grid technique for a high energy gamma-ray detector. The proper position and width of virtual Frisch-grid was determined from electric field simulation using ANSYS Maxwell ver. 14.0. Energy resolution of 2.2% was achieved for the 662 keV ${\gamma}$-peak of $^{137}Cs$ with virtual Frisch-grid CdZnTe detector.

A Study on the Physical Characteristics of Photoconductors for Photon Counting based X-ray Sensor Application (광계수형 기반의 X선 영상센서 적용을 위한 광도전체 물성 연구)

  • Park, Ji Koon;Noh, Si Cheol;Choi, Il Hong;Jung, Bong Jae;Kang, Sang Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.423-428
    • /
    • 2014
  • Digital X-ray imaging devices using a TFT based flat panel array has been used in medical field. But, recently, lots of research on the photon counting sensor has been reported. In this study, we evaluated the physical properties of the photoconductor by suggesting the standard and testing method for quantitative performance evaluation of photon counting x-ray imaging sensor. First, we measured the leakage current and the sensitivity of photon counting x-ray imaging sensor and we evaluated the characteristic of rising time for determining the signal shaping time. In addition, the set-up study was conducted on the basis of the IEC 62220-1-2 recommendations to define the number of incident photons per unit area. And the efficiency of the charge collection was also evaluated. As a result, the characteristic was measured as $200pA/mm^2$ of the leakage current, $7{\mu}C/cm^2R $ of the X-ray sensitivity, and $0.765{\mu}s$ of the rising time.