• Title/Summary/Keyword: charge Injection

Search Result 365, Processing Time 0.03 seconds

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Space charge characteristics in several polymers at high temperature (고분자 재료의 고온하분포특성)

  • 남진호;고정우;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.84-87
    • /
    • 2001
  • Space charge formation at high temperature was investigated in several polymers using pulsed electro-acoustic (PEA) method. In SXLPE, homocharge is found and increased as an increase of temperature. In a charge of polarity of poling voltage(positive to negative), space charge mainly cause of hole injection. In Ionomer, heterocharge is found because of ion. As an increase of temperature heterocharge is also increased. In PET, As an increase of temperature homocharge is decreased.

  • PDF

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

Charge Accunmulation Characteristics in LDPE (저밀도 폴리에틸렌의 전하축적 특성)

  • ;;Tatsuo Takada
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.42-49
    • /
    • 1992
  • Charge accumulation characteristics in low density polyethylene (LDPE) has been discussed based upon the internal charge distrubution measured by the pulsed electroacoustic technique. When the negative voltage with respect to earth is applied to the upper electrode, the negative charges near the anode and the positive charges near the cathode are accumulated in LDPE. Also, there was an asymmetric behavior of charge accumulation exhibiting that the charge accumulation near the anode keeps increasing whereas that near the cathode increases first and then decreases. Besides, under the present test conditions the internal charge distrubution becomes stabilized eventually. When the positive voltage with respect to earth is applied to the upper electrode, on the other hand, no such asymmetric charge accumulation was found. Therefore, it can be concluded that the heterocharges are accumulated at the surface region of LDPE subjected to high do voltages and that the begavior of charge accumulation depends on the polarity of do voltage and the position of charge accumulation.

  • PDF

PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology (PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰)

  • 나준희;최서윤;김용구;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.21-29
    • /
    • 2004
  • Hot carrier degradation characteristics of Nano-scale CMOSFETs with dual gate oxide have been analyzed in depth. It is shown that, PMOSFET lifetime dominate the device lifetime than NMOSFET In Nano-scale CMOSFETs, that is, PMOSFET lifetime under CHC (Channel Hot Carrier) stress is much lower than NMOSFET lifetime under DAHC (Dram Avalanche Hot Carrier) stress. (In case of thin MOSFET, CHC stress showed severe degradation than DAHC for PMOSFET and DAHC than CHC for NMOSFET as well known.) Therefore, the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor in upcoming Nano-scale CMOSFET technology. In case of PMOSFETs, CHC shows enhanced degradation than DAHC regardless of thin and thick PMOSFETs. However, what is important is that hot hole injection rather than hot electron injection play a important role in PMOSFET degradation i.e. threshold voltage increases and saturation drain current decreases due to the hot carrier stresses for both thin and thick PMOSFET. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method. Therefore, suppression of PMOSFET hot carrier degradation or hot hole injection is highly necessary to enhance overall device lifetime or circuit lifetime in Nano-scale CMOSFET technology

A 285-fsrms Integrated Jitter Injection-Locked Ring PLL with Charge-Stored Complementary Switch Injection Technique

  • Kim, Sungwoo;Jang, Sungchun;Cho, Sung-Yong;Choo, Min-Seong;Jeong, Gyu-Seob;Bae, Woorham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.860-866
    • /
    • 2016
  • An injection-locked ring phase-locked loop (ILRPLL) using a charge-stored complementary switch (CSCS) injection technique is described in this paper. The ILRPLL exhibits a wider lock range compared to other conventional ILRPLLs, owing to the improvement of the injection effect by the proposed CSCS. A frequency calibration loop and a device mismatch calibration loop force the frequency error to be zero to minimize jitter and reference spur. The prototype chip fabricated in 65-nm CMOS technology achieves a $285-fs_{rms}$ integrated jitter at GHz from the reference clock of 52 MHz while consuming 7.16 mW. The figure-of-merit of the ILRPLL is -242.4 dB.

An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME (파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Pyo, Youngduck;Lee, Youngjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.

전력설비용 Polyethlene의 열자극 표면전위법에 의한 공간저하 측정에 관한 연구

  • 이경섭;국상훈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.63-67
    • /
    • 1990
  • Many characteristics of space charge in insulating materials which is the cause of insulation break down was measured quantita-tively. It was confirmed that injection charge of the electrode was trapped to form mainly space charge. In the present paper, collecting potential was determined by TSSP and mean depths of space distribution was investigated by measuring variation quantity of space charge under the different bias time, voltage and temperature. Experimental resuts was in good agreement with model analysis on a stedy state.

  • PDF

Analysis of Switching Transient State characteristis Based on Space charge Overlapping Model (공간전하중첩 모델에 의한 스위칭과도장태 특성해석)

  • 정홍배;박창엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 1981
  • In this study, a numerical theory based on space charge overlapping model and experiments on the propriety of its theory were carried out to analyze the switching transient characteristic in amorphous coalcogenide thin film. Theoretical and experimental as well as analytical investigations were carried out on the switching behaviour in a transient state arising from a voltage pulse applied to amorphous chalcogenide thin films at room temperature. The results can be explained in terms ot a simple theoretical model of the electronic characteristics of switching. The injection of carriers are necessary to initiate the switching action and injected carriers contribute to the current flow as a space-charge limited current(SCLC) The proposed charge controlled switching characteristics can be explained by double injection space charge overlapping model.

  • PDF

Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method (유한요소법과 전계-열전자 방출 모델에 의한 절연유체 내 공간전하 전파해석)

  • Lee, Ho-Young;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2011-2015
    • /
    • 2009
  • In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was $50{\mu}m$.