• Title/Summary/Keyword: charge Injection

Search Result 365, Processing Time 0.029 seconds

THE EFFECT OF DOPANT OUTDIFFUSION ON THE NEUTRAL BASE RECOMBINATION CURRENT IN Si/SiGe/Si HETEROJUNCTION BIPOLAR TRANSISTORS

  • Ryum, Byung-R.;Kim, Sung-Ihl
    • ETRI Journal
    • /
    • v.15 no.3
    • /
    • pp.61-69
    • /
    • 1994
  • A new analytical model for the base current of Si/SiGe/Si heterojunction bipolar transistors(HBTs) has been developed. This model includes the hole injection current from the base to the emitter, and the recombination components in the space charge region(SCR) and the neutral base. Distinctly different from other models, this model includes the following effects on each base current component by using the boundary condition of the excess minority carrier concentration at SCR boundaries: the first is the effect of the parasitic potential barrier which is formed at the Si/SiGe collector-base heterojunction due to the dopant outdiffusion from the SiGe base to the adjacent Si collector, and the second is the Ge composition grading effect. The effectiveness of this model is confirmed by comparing the calculated result with the measured plot of the base current vs. the collector-base bias voltage for the ungraded HBT. The decreasing base current with the increasing the collector-base reverse bias voltage is successfully explained by this model without assuming the short-lifetime region close to the SiGe/Si collector-base junction, where a complete absence of dislocations is confirmed by transmission electron microscopy (TEM)[1].The recombination component in the neutral base region is shown to dominate other components even for HBTs with a thin base, due to the increased carrier storage in the vicinity of the parasitic potential barrier at collector-base heterojunction.

  • PDF

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPc)/$C_{60}$ devices (Zinc phthalocyanine(ZnPc)/$C_(60)$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Lee, Won-Jae;Shin, Hoon-Kyu;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1712-1714
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine($C_{60}$) as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source.

  • PDF

A Study on the Feasibility of the Electrostatic Cell (PN접합 SCR내 전하주입을 통한 정전기전지 제작 가능성에 관한 연구)

  • Kang Hoe-Jong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.9-12
    • /
    • 2005
  • This paper describes the feasibility of the electrostatic cell using carrier injection in SCR(space charge region) of PN junction. It compares the principle of the electrostatic cell's operation with the solar cell's. According to the experiment and calculation of this paper, when the cross section area of the device is $0.0001cm^2$, the device current becomes 0.15mA which is practically high enough. This paper proposes that the electrostatic cell can be used as a physical battery.

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

Electrical Properties of Organic Light-emitting Diodes Using TCNQ Molecules (TCNQ 분자를 이용한 유기 발광 소자의 전기적 특성)

  • Na, Su-Hwan;Kim, Tae-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.896-900
    • /
    • 2010
  • Electrical properties of organic light-emitting diodes were studied in a device with 7,7,8,8-tetracyano-quinodimethane (TCNQ) to see how the TCNQ affects on the device performance. Since the TCNQ has a high electron affinity, it is used for a charge-transport and injection layer. We have made a reference device in a structure of ITO(170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm). And two types of devices were manufactured. One type of device is the one made by doping 5 and 10 vol% of TCNQ to N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) layer. And the other type is the one made with TCNQ layer inserted in between the ITO anode and TPD organic layer. Organic layers were formed by thermal evaporation at a pressure of $10^{-6}$ torr. It was found that for the TCNQ doped devices, turn-on voltage of the device was reduced by about 20 % and the current efficiency was improved by about three times near 6 V. And for devices with TCNQ layer inserted in between the ITO anode and TPD layer, it was found that the current efficiency was improved by more than three times even though there was not much change in turn-on voltage.

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

The Study on the Luminescent Element of Electro Chromisn in Polyelectrolyte (고분자전해질 Electro Chromism의 발광소자에 관한 연구)

  • 국상훈;고두석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1988
  • For experiment, we made the electro chemical display element with the NESA glass of display electrode which had low resistance. Density of injection charge, optical density and response characteristics were observed through coloring and achromatizing phemomena in the display element As optical electric chemical reaction was occured in $WO_3$ and cell, it was possible to repeat colouring and achromatizing, and the colouring characteristics was good. And the higher colouring and achromatizing voltage, the lower resistance of electrode and the thinner $WO_3$film was, the better response characteristics. With analyzing phenomena of electro chromism, we could find the possibility of practical use of the coloring and achromatizing element for clock, instrument and guide plate.

  • PDF

The charge injection characteristics of nonvolatile MNOS memory devices (비휘발성 MNOS기억소자의 전하주입특성)

  • 이형옥;서광열
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.152-160
    • /
    • 1993
  • MNOS 구조에서 23.angs.의 얇은 산화막을 성장한 후 LPCVD방법으로 S $i_{3}$ $N_{4}$막을 각각 530.angs., 1000.angs. 두께로 달리 증착했을때 비휘발성 기억동작에 미치는 전하주입 및 기억유지 특성을 자동 .DELTA. $V_{FB}$ 측정 시스템을 제작하여 측정하였다. 전하주입 측정은 펄스전압 인가전의 초기 플랫밴드전압 0V.+-.10mV, 펄스폭 100ms 이내로 설정하고 단일 펄스전압을 인가하였다. 기억유지특성은 기억트랩에 전하를 포획시킨 직후 $V_{FB}$ 유지와 0V로 유지한 상태에서 $10^{4}$sec까지 측정하였다. 본 논문에서 유도된 산화막 전계에 대한 터넬확률을 적용한 전하주입 이론식은 실험결과와 잘 일치하였으며 본 해석방법으로 직접기억트랩밀도와 이탈진도수를 동시에 평가할 수 있었다. 기억트랩의 포획전하는 실리콘쪽으로의 역 터넬링으로 인한 조기감쇠가 컸으며 $V_{FB}$ 유지인 상태가 초기 감쇠율이 0V로 유지한 경우 보다 낮았다. 그리고 기억유지특성은 S $i_{3}$ $N_{4}$막의 두께보다 기억트랩밀도의 의존성이 크며 S $i_{3}$ $N_{4}$막두께의 축소로 기록전압을 저전압화시킬 수 있음을 알 수 있었다.

  • PDF

$CsN_3$ as an air stable and low temperature evaporable novel n doping material for high efficiency and low driving voltage in organic light-emitting diodes

  • Lee, Jun-Yeob;Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Lee, Tae-Woo;Noh, Tae-Yong;Yang, Haa-Jin;Kang, Sung-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1319-1322
    • /
    • 2008
  • $CsN_3$ was developed as a novel n doping material with air stability and low deposition temperature. Evaporation temperature of $CsN_3$ was similar to that of common hole injection material and it worked well as a n dopant in electron transport layer. Driving voltage was lowered and high power efficiency was obtained in green phosphorescent devices by using $CsN_3$ as a dopant in electron transport layer. It could also be used as a charge generation layer in combination with $MoO_3$. In addition, n doping mechanism study revealed that $CsN_3$ is decomposed into Cs and $N_2$ during evaporation. This is the first work reporting air stable and low temperature evaporable n dopant in organic light-emitting diodes.

  • PDF