• 제목/요약/키워드: character classifier

검색결과 49건 처리시간 0.026초

멀티 프로세서 시스템에 의한 고속 문자인식 (High Speed Character Recognition by Multiprocessor System)

  • 최동혁;류성원;최성남;김학수;이용균;박규태
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.8-18
    • /
    • 1993
  • A multi-font, multi-size and high speed character recognition system is designed. The design principles are simpilcity of algorithm, adaptibility, learnability, hierachical data processing and attention by feed back. For the multi-size character recognition, the extracted character images are normalized. A hierachical classifier classifies the feature vectors. Feature is extracted by applying the directional receptive field after the directional dege filter processing. The hierachical classifier is consist of two pre-classifiers and one decision making classifier. The effect of two pre-classifiers is prediction to the final decision making classifier. With the pre-classifiers, the time to compute the distance of the final classifier is reduced. Recognition rate is 95% for the three documents printed in three kinds of fonts, total 1,700 characters. For high speed implemention, a multiprocessor system with the ring structure of four transputers is implemented, and the recognition speed of 30 characters per second is aquired.

  • PDF

Integrated Method for Text Detection in Natural Scene Images

  • Zheng, Yang;Liu, Jie;Liu, Heping;Li, Qing;Li, Gen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5583-5604
    • /
    • 2016
  • In this paper, we present a novel image operator to extract textual information in natural scene images. First, a powerful refiner called the Stroke Color Extension, which extends the widely used Stroke Width Transform by incorporating color information of strokes, is proposed to achieve significantly enhanced performance on intra-character connection and non-character removal. Second, a character classifier is trained by using gradient features. The classifier not only eliminates non-character components but also remains a large number of characters. Third, an effective extractor called the Character Color Transform combines color information of characters and geometry features. It is used to extract potential characters which are not correctly extracted in previous steps. Fourth, a Convolutional Neural Network model is used to verify text candidates, improving the performance of text detection. The proposed technique is tested on two public datasets, i.e., ICDAR2011 dataset and ICDAR2013 dataset. The experimental results show that our approach achieves state-of-the-art performance.

원형 마스크 팽창법에 의한 무자인식 (The character classifier using circular mask dilation method)

  • 박영석;최철용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.913-916
    • /
    • 1998
  • In this paper, to provide the robustness of character recognition, we propose a recognition method using the dilated boundary curve feature which has the invariance characteristics for the shift, scale, and rotation changes of character pattern. And its some characteristics and effectieness are evaluated through the experiments for both the english alphabets and the numeral digits. The feature vector is represented by the fourier descriptor for a boundary curve of the dilated character pattern which is generated by the circular mask dilation method, and is used for a nearest neighbort classifier(NNC) or a nearest neighbor mean classifier(NNMC). These the processing time and the recognition rate, and take also the robustness of recognition for both some internal noise and partial corruption of an image pattern.

  • PDF

홍용 문자 코드 집합을 위한 계층적 다중문자 인식기 (Hierarchical Multi-Classifier for the Mixed Character Code Set)

  • 김도현;박재현;김철기;차의영
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1977-1985
    • /
    • 2007
  • 문자 인식은 인공지능의 한 분야로써 자동화 시스템, 로봇, HCI 분야에서 그 응용성 이 증대되고 있는 첨단 기술이다. 본 논문에서는 숫자, 기호, 영어, 한글이 여러 가지 형태로 조합되어 사용될 수 있는 영역에서의 문자 인식을 위해 인식 문자 집합과 대표 문자를 도입하였다. 여러 가지 조합의 언어 집합에 따른 소규모 인식기를 계층적으로 조합하여 인식 결과의 정확성을 높이고 시간 비용을 줄일 수 있는 효율적인 인식기 구조를 제안하였다. 그리고 학습 성능이 우수한 Delta-bar-delta 알고리즘을 이용하여 개별 소규모 인식기를 학습한 다음 다양한 개별 문자를 대상으로 그 인식 성능을 살펴본 결과 99%의 인식률을 획득함으로써 혼용 언어 문자 인식의 효율성과 신뢰성을 증명하였다.

고성능 한자 인식 시스템 (High Performance Recognition System for Chinese Character)

  • 안성옥;주기호
    • 공학논문집
    • /
    • 제1권1호
    • /
    • pp.59-64
    • /
    • 1997
  • 2000개 이상의 많은 한자들이 신문이나 책들의 출판물에서 매일 사용되고 있다. 한자는 문자의 복잡성과 방대한 양으로 인하여 문자인식에 많은 어려움이 있다. 본 논문은 고성능 한자 인식 시스템을 제안하고 한자의 특성을 고려한 새로운 문자 분류기법을 개발하였다.

  • PDF

A Contour Descriptors-Based Generalized Scheme for Handwritten Odia Numerals Recognition

  • Mishra, Tusar Kanti;Majhi, Banshidhar;Dash, Ratnakar
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.174-183
    • /
    • 2017
  • In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현 (Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 2019
  • 플로팅 홀로그램은 광고나 콘서트와 같이 넓은 공간에서 현장감과 실존감이 뛰어난 3D 입체영상을 제공하면서, 3D 안경의 불편함, 시각적 피로, 공간 왜곡 현상 발생을 감소할 수 있는 기술이다. 따라서 본 논문은 좁은 공간에서도 사용가능한 플로팅 홀로그램 환경에서 캐릭터 조작을 위한 사용자 제스처 인식 시스템을 구현한다. 제안된 방법은 하르 특징기반의 캐시케이드((Harr feature-based cascade classifier) 분류기를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역을 기준으로 실시간으로 체스쳐 차영상으로부터 사용자 제스쳐의 발생 위치 정보를 이용하여 사용자 제스쳐를 인식한다. 그리고 각각 인식된 제스쳐 정보는 플로팅 홀로그램 환경에서 생성된 캐릭터 움직임을 조작하기 위하여 상응하는 행위에 맵핑된다. 제안된 플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템의 성능평가를 위해서는 플로팅 홀로그램 디스플레이 장치를 제작하고, 몸 흔들기, 걷기, 손 흔들기, 점프 등의 각 제스처에 따른 인식률을 반복 측정한 결과 평균 88%의 인식률을 보였다.

Development of character recognition system for the billet images in the steel plant

  • Lee, Jong-Hak;Park, Sang-Gug;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1183-1186
    • /
    • 2004
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the realtime billet characters recognition system in the steel production line. Normally, the billets are mixed at yard so that their identifications are very difficult and very important processing. The character recognition algorithm used in this paper is base on the subspace method by K-L transformation. With this method, we need no special feature extraction steps, which are usually error prone. So the gray character images are directly used as input vectors of the classifier. To train the classifier, we have extracted eigen vectors of each character used in the billet numbers, which consists of 10 arabia numbers and 26 alphabet aharacters, which are gathered from billet images of the production line. We have developed billet characters recognition system using this algorithm and tested this system in the steel production line during the 8-days. The recognition rate of our system in the field test has turned out to be 94.1% (98.6% if the corrupted characters are excluded). In the results, we confirmed that our recognition system has a good performance in the poor environments and ill-conditioned marking system like as steel production plant.

  • PDF

우편물 자동구분기의 구분율 향상을 위한 문자인식기의 구현 방법 (An Implementation Method of the Character Recognizer for the Sorting Rate Improvement of an Automatic Postal Envelope Sorting Machine)

  • 임길택;정선화;장승익;김호연
    • 한국산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.15-24
    • /
    • 2007
  • 우편물의 자동구분을 위해서는 주소영상의 인식이 필수적이다. 주소영상의 인식 과정은 주소영상 전처리, 문자인식, 주소해석의 과정으로 이루어져 있다. 주소영상 전처리 과정을 통해 추출된 문자영상들은 인식과정으로 전달되고 이 과정에서 각 문자영상마다 다수의 후보문자와 인식 스코어가 생성된다. 주소해석기는 후보문자와 인식 스코어의 집합을 이용하여 유효한 최종 주소를 생성한다. 우편물의 자동구분 율은 주소영상의 인식과정에 포함된 모든 과정의 성능에 따라 좌우되는데 특히 문자인식 성능이 중요한 요인이다. 주소인식에서 좋은 문자인식기란 주소해석이 용이할 수 있도록 신뢰도 높은 후보문자를 생성하는 것이라 할 수 있다. 본 논문에서는 문자인식기에서 신뢰도 높은 후보문자를 생성하는 방법을 제안한다. 논문에서는 현행 우편물 자동구분기의 주소인식 시스템에서 사용되고 있는 MLP 인식기를 개별 문자인식을 위한 인식기로 사용한다. MLP 인식기는 인식 속도와 인식률 측면에서 가장 우수한 인식기의 하나로 알려져 있지만, false alarm과 같은 잘못된 결과를 생성하기도 하는데 이는 주소해석을 어렵게 만드는 주요 요인이 된다. 본 논문에서는 주소해석을 쉽게 하고 우편물 구분율을 높이기 위해 기 구현된 MLP 인식기의 출력값을 재추정하는 방법을 제안한다. 재추정값의 신뢰도를 높이기 위한 인식기의 통계적 동작특성을 생성하는 방법과, 기존 MLP와 신뢰도 재추정기로서 동작하는 Subspace 인식기를 결합하는 방법을 제안한다. 제안 방법의 타당성을 확인하기 위해 우체국에 설치된 우편물구분기로부터 획득한 문자영상을 이용하여 실험하였다. 실험 결과 제안 방법이 개별 문자 및 비문자에 대한 오류율과 기각률 측면에서 높은 신뢰도를 보임을 확인할 수 있었다.

  • PDF