• Title/Summary/Keyword: channeling

Search Result 128, Processing Time 0.025 seconds

Numerical method study of how buildings affect the flow characteristics of an urban canopy

  • Zhang, Ning;Jiang, Weimei;Hu, Fei
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.159-172
    • /
    • 2004
  • The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard $k-{\varepsilon}$ turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard $k-{\varepsilon}$ models, it is important to pay attention to certain discrepancies when results from the standard $k-{\varepsilon}$ models are used in design or policy decisions: The standard $k-{\varepsilon}$ model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.

A Numerical Analysis of Molten Steel Flow Under Applied Magnetic Fields in Continuous Casting

  • Yoon, Teuk-Myo;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2010-2018
    • /
    • 2003
  • Although continuous casting process has highly developed, there still remain many problems to be considered. Specifically, two vortex flows resulting from impingement against narrow walls make a flow field unstable in a mold, and it is directly related to internal and external defects of steel products. To cope with this instability, EMBR (Electromagnetic Brake Ruler) technique has been lately studied for the stability of molten steel flow, and it is revealed that molten steel flow in a mold can be controlled with applied magnetic field. However, it is still difficult to clarify flow pattern in an EMBR caster due to complex correlations among variables such as geometric factors, casting conditions, and the place and the intensity of charged magnetic field. In the present study, flow field in a mold is focused with different conditions of electromagnetic effect. To accurately analyze the case, three dimensional low Reynolds turbulent model and appropriate boundary conditions are chosen. To evaluate the electromagnetic effect in molten steel flow, dimensionless numbers are employed. The results show that the location and the intensity of the applied magnetic field significantly influence the flow pattern. Both impingement and internal flow pattern are changed remarkably with the change of the location of applied magnetic field. It turns out that an insufficient magnetic force yields adverse effect like channeling, and rather lowers the quality of steel product.

Heat Transfer Performance of the Duct with Various Cross Section in Heat Exchanger (단면형상 변화에 따른 전열교환기 열전달 특성변화에 대한 연구)

  • Kim, Eung-Bok;Han, Min-Sub;Kim, Nae-Hyun;Won, Tae-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2010
  • It is a critical task to keep the ventilation system working in a proper and efficient manner in large multi-storey buildings, and the enthalpy exchanger is becoming an increasingly important part of the ventilation system by playing the function of channeling heat and moisture. We present a computational study on the heat transfer performance of the cross-flow enthalpy exchanger, which is in large use for residential buildings. The ducts are considered whose cross-sectional shapes resemble triangle and longitudinal centerline a cosine wave. It is shown that, as the cross-sectional shape departs from triangle, the heat transfer performance of the duct tends to deteriorate. Also, applying the wave-like shape to the longitudinal centerline of the duct increases the rate of heat transfer and the applied pressure-gradient at the same time. The origin of the performance variations in the cases considered are quantitatively analyzed and discussed.

Mobilization of Photosystem II-Light Harvesting Complex II Supercomplexes during High Light Illumination and State Transitions

  • Nath, Krishna;Elizabeth, John;Poudyal, Roshan Sharma;Ko, Su Yeon;Lim, Woon Ki;Lee, Choon-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • The photosystem II (PSII) light harvesting complex (LHC) consists of a variety of pigment protein complexes which are involved in structural organization and regulation of photosynthetic unit. These LHC proteins encoded by a group of Lhcb genes are essential for the structural integrity of PSII supercomplex, the channeling the excitation energy to the reaction center of PSII and its redistribution to photosystem I by state transitions. Numerous studies with the help of recent technological advancements have enabled a significant progress in our understanding on the structure of PSII-LHCII supercomplexes and their mobilization under various light conditions. Here, we present a mini-review on the latest concepts and models depicting the structure of PSII-LHCII supercomplexes and the role of Lhcb proteins in their supra-molecular organization. Also we will review on the current understandings and remaining problems involved in the mobilization of the supercomplexes during state transitions and during high light illumination for controlling light energy distribution between the two photosystems.

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo;Choi, Han-Woo;Kim, Joon-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

Tissue proteomics for cancer biomarker development - Laser microdissection and 2D-DIGE -

  • Kondo, Tadashi
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.626-634
    • /
    • 2008
  • Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.

Effects of an Apartment Complex on Flow and Dispersion in an Urban Area (도시 지역에서 아파트 단지가 흐름과 확산에 미치는 영향)

  • Lee, Young-Su;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.95-108
    • /
    • 2011
  • The effects of an apartment complex on flow and pollutant dispersion in an urban area are numerically investigated using a computational fluid dynamics (CFD) model. The CFD model is based on the Reynolds-averaged Navier-Stokes equations and includes the renormalization group k-${\varepsilon}$ turbulence model. The geographic information system (GIS) data is used as an input data of the CFD model. Eight numerical simulations are carried out for different inflow directions and, for each inflow direction, the effects of an apartment complex are investigated, comparing the characteristics of flow and dispersion before and after construction of the apartment complex in detail. The observation data of automatic weather system (AWS) is analyzed. The windrose analysis shows that the wind speed and direction after the construction of the complex are quite different from those before the construction. The construction of the apartment complex resulted in the decrease in wind speed at the downwind region. It is also shown that the wind speed increased partially inside the apartment complex due to the channeling effect to satisfy the mass continuity. On the whole, the wind speed decreased at the downwind region due to the drag effect by the apartment complex. As a result, the passive pollutant concentration increased (decreased) near the downwind region of (within) the apartment complex compared with that before the construction.

Influence of Local Wind on Occurrence of Fog at Inland Areas (국지풍이 내륙의 안개발생에 미치는 영향)

  • Shim, Hwa-Nam;Lee, Young-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.213-224
    • /
    • 2017
  • We have examined the influence of local wind on occurrence of fog at two inland areas, Chuncheon and Andong, in Korea. The surrounding topography of two inland areas shows significant difference: Chuncheon is located in the basin surrounded by ridges with north-south axis while Andong is located in the valley between the ridges with east-west axis. Occurrence of fog shows maximum in October at both sites but high occurrence of fog at Chuncheon is also noted in the winter. Occurrence of fog at Andong in October is much larger than that at Chuncheon. High occurrence of fog in October is due to favorable synoptic condition for fog formation such as weak wind, clear day and small depression of the dew-point. Fog occurrence at Chuncheon is closely related to very weak wind condition where wind speed is less than $0.5m\;s^{-1}$. The weak wind at Chuncheon in winter is due that pressure driven channeling wind (southerly) cancels out partly downslope northerly flow during nighttime. On the other hand, fog at Andong occurs well when wind is southeasterly which is thermally forced flow during nighttime. Southeasterly provides cold, moist air from the narrow valley to Andong during nighttime, leading to favorable condition for formation of fog.