• Title/Summary/Keyword: channel sensing methods

Search Result 63, Processing Time 0.023 seconds

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

The Development of Image Processing System Using Area Camera for Feeding Lumber (영역카메라를 이용한 이송중인 제재목의 화상처리시스템 개발)

  • Kim, Byung Nam;Lee, Hyoung Woo;Kim, Kwang Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • For the inspection of wood, machine vision is the most common automated inspection method used at present. It is required to sort wood products by grade and to locate surface defects prior to cut-up. Many different sensing methods have been applied to inspection of wood including optical, ultrasonic, X-ray sensing in the wood industry. Nowadays the scanning system mainly employs CCD line-scan camera to meet the needs of accurate detection of lumber defects and real-time image processing. But this system needs exact feeding system and low deviation of lumber thickness. In this study low cost CCD area sensor was used for the development of image processing system for lumber being fed. When domestic red pine being fed on the conveyer belt, lumber images of irregular term of captured area were acquired because belt conveyor slipped between belt and roller. To overcome incorrect image merging by the unstable feeding speed of belt conveyor, it was applied template matching algorithm which was a measure of the similarity between the pattern of current image and the next one. Feeding the lumber over 13.8 m/min, general area sensor generates unreadable image pattern by the motion blur. The red channel of RGB filter showed a good performance for removing background of the green conveyor belt from merged image. Threshold value reduction method that was a image-based thresholding algorithm performed well for knot detection.

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest (온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석)

  • Han, Sang Hak;Yun, Chung Weon;Lee, Sanghun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.361-370
    • /
    • 2020
  • Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.