• Title/Summary/Keyword: channel scheduling

Search Result 337, Processing Time 0.03 seconds

A Simulation Framework for Wireless Compressed Data Broadcast

  • Seokjin Im
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.315-322
    • /
    • 2023
  • Intelligent IoT environments that accommodate a very large number of clients require technologies that provide secure information service regardless of the number of clients. Wireless data broadcast is an information service technique that ensures scalability to deliver data to all clients simultaneously regardless of the number of clients. In wireless data broadcasting, clients access the wireless channel linearly to explore the data, so the access time of clients is greatly affected by the broadcast cycle. Data compression-based data broadcasting can reduce the broadcast cycle and thus reduce client access time. Therefore, a simulation framework that can evaluate the performance of data broadcasting by applying different data compression algorithms is essential and important. In this paper, we propose a simulation framework to evaluate the performance of data broadcasting that can adopt data compression. We design the framework that enables to apply different data compression algorithms according to the data characteristics. In addition to evaluating the performance according to the data, the proposed framework can also evaluate the performance according to the data scheduling technique and the kind of queries the client wants to process. We implement the proposed framework and evaluate the performance of data broadcasting using the framework applying data compression algorithms to demonstrate the performances of data compression broadcasting.

A Sensing Channel Scheduling Scheme for Improving the Cognition Ability in Cognitive Radio Systems (인지 라디오 시스템에서 주파수 상황인지 능력 향상을 위한 감지 채널 스케줄링 기법)

  • Han, Jeong-Ae;Jeon, Wha-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.130-138
    • /
    • 2008
  • The scheme for recognizing the channel availability is one of the most important research issues in cognitive radio systems utilizing unused frequency bands. In this paper, we propose a novel scheme of selecting sensing channel in order to improve the sensing ability of frequency status in cognitive radio ad hoc networks. To fully exploit the sensing ability of each cognitive radio user, we adopt a master for a cluster which is made of several cognitive radio users. By gathering and analyzing the sensing information from cognitive radio users in the cluster, the cooperative sensing is realized. Since the transmission range of a licensed user is limited, it is possible that a master determines different sensing channels to each cognitive radio users based on their location. By making cognitive radio users sense different channels, the proposed scheme can recognize the state of wireless spectrum fast and precisely. Using the simulation, we compare the performance of the proposed scheme with those of two different compared schemes that one makes cognitive radio users recognize the frequency status based on their own sensing results and the other shares frequency status information but does not utilize the location information of licensed user. Simulation results show that the proposed scheme provides available channels as many as possible while detecting the activation of licensed user immediately.

Performance Evaluation of Inter-Sector Collaborative PF Schedulers for Multi-User MIMO Transmission Using Zero Forcing (영점 강제 다중 사용자 MIMO 전송 시 셀 간 정보 교환을 활용한 협력적 PF 스케줄러의 성능 평가)

  • Lee, Ji-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • Multi-user MIMO (Multiple-Input Multiple-Output) systems require collaborative PF schedulers to improve the performance of the log sum of average transmission rates. While the performance of single cell based conventional PF schedulers has been evaluated over various channel conditions, scheduling algorithms by multiple base stations which select multiple users over a given time frame and their performance require further investigations. In this paper, we apply a collaborative PF scheduler to the distributed multi-user MIMO system, which assigns radio resources to multiple users by exchanging user channel information from base stations located in three adjacent sectors. We further evaluate its performance in terms of the log sum of average transmission rates. The performance is compared to that of the full-search collaborative PF scheduler which searches over all possible combinations of user groups, and that of a parallel PF scheduler that determines users without channel information exchange among base stations. We show the log sum of average transmission rates of the collaborative PF scheduler outperforms that of the parallel PF scheduler in low percentile region. In addition, the collaborative PF scheduler exhibits a negligible performance degradation when compared to the full-search collaborative PF scheduler while a significant reduction of the computational complexity is achievable at the same time.

Dynamic Bandwidth Allocation Algorithm with Two-Phase Cycle for Ethernet PON (EPON에서의 Two-Phase Cycle 동적 대역 할당 알고리즘)

  • Yoon, Won-Jin;Lee, Hye-Kyung;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.349-358
    • /
    • 2007
  • Ethernet Passive Optical Network(EPON), which is one of PON technologies for realizing FTTx(Fiber-To-The-Curb/Home/Office), can cost-effectively construct optical access networks. In addition, EPON can provide high transmission rate up to 10Gbps and it is compatible with existing customer devices equipped with Ethernet card. To effectively control frame transmission from ONUs to OLT EPON can use Multi-Point Control Protocol(MPCP) with additional control functions in addition to Media Access Control(MAC) protocol function. For EPON, many researches on intra- and inter-ONU scheduling algorithms have been performed. Among the inter-ONU scheduling algorithms, IPS(Interleaved Polling with Stop) based on polling scheme is efficient because OLT assigns available time portion to each ONU given the request information from all ONUs. Since the IPS needs an idle time period on uplink between two consecutive frame transmission periods, it wastes time without frame transmissions. In this paper, we propose a dynamic bandwidth allocation algorithm to increase the channel utilization on uplink and evaluate its performance using simulations. The simulation results show that the proposed Two-phase Cycle Danamic Bandwidth Allocation(TCDBA) algorithm improves the throughput about 15%, compared with the IPS and Fast Gate Dynamic Bandwidth Allocation(FGDBA). Also, the average transmission time of the proposed algorithm is lower than those of other schemes.

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

Uplink Relaying Scheme for Efficient Frequency Usage in Cognitive Radio Networks (인지 무선 네트워크 환경에서 효율적인 주파수 활용을 위한 상향링크 릴레이 기법)

  • Kim, Se-Woong;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.356-368
    • /
    • 2011
  • While most of the public radio spectrum bands are allocated to licensed users, cognitive radio has been considered as a promising technology for the efficient spectrum utilization. In this new technology, secondary users opportunistically use the temporally underutilized licensed bands as long as they do not give the harmful interference to primary users. In this paper, we focus on the infra-structured network condition in which the cognitive radio network consists of a cognitive radio base station and multiple secondary users. Upon detecting a primary user, the entire cognitive radio network generally switches to another available channel, even if most of the on-going communications still does not interfere with the primary user. Moreover, the network re-entry process on a new channel causes the service disruption of the on-going communications. For this reason, in this paper, we propose a relaying scheme for efficient frequency usage, in which the secondary user out of the interference range of a primary user performs as a relaying node for the secondary user possibly interfering with a primary user. The entire spectrum switching is not required, and thus, we can avoid the service disruption of the on-going communications as much as possible.

Flow-Based WTP Scheduler for Proportional Differentiated Services in Wireless Communication Systems (무선통신 시스템에서의 비례지연서비스를 위한 플로우 기반 WTP 스케쥴러)

  • Park Hyosoon;Kwon Eunhyun;Kim Taehyoun;Lee Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.433-439
    • /
    • 2005
  • In this paper, we propose a Flow Based Waiting Time Priority (FB-WTP) scheduler that supports the proportional delay differentiated services between classes. Existing scheduling algorithms utilize the configuration of scheduler, which is operated as class unit, applied to wired network. However, FB-WTP scheduler is operated as flow unit and can take advantage of multi-flow diversity effect in time-varying channel state environment. As a result, FB-WTP improves the average queueing delay on each class as well as supporting the average queueing delay ratio between classes. It also solves the HOL packet blocking problem implicitly. Simulation results show that FB-WTP scheduler has better system queueing delay performance than Look-ahead Waiting Time Priority (LWTP) scheduler and supports the larger queueing delay ratio between classes that network operator set.

Efficient Interference Alignment for Uplink MIMO/FDD Systems with Limited Feedback (제한된 궤환 채널 기반 상향링크 MIMO/FDD 시스템에서의 효율적인 간섭 정렬 기법)

  • Cho, Sung-Yoon;Jang, Jin-Young;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.988-996
    • /
    • 2012
  • Assuming perfect channel state information (CSI), the conventional interference alignment (IA) algorithm in the uplink cellular system suppresses inter-cell interference (ICI) by aligning ICI to a randomly selected reference vector. However, IA in practice relies on limited feedback between base stations and users, resulting in residual ICI. In this paper, we propose the optimization of the reference vector that minimizes the upper-bound of residual ICI power. Secondly, the iterative IA that designs the direction of transmit and receive filter is proposed to minimize the residual ICI as well as maximize the desired signals. Moreover, we propose the user scheduling method combined with proposed IA schemes which provides the multiuser diversity gain in multi-cell environments. Finally, the performance gain of the proposed IA algorithms compared with the existing IA are analyzed and demonstrated by simulation results.

Concurrency Control for Mobile Transactions consisted mainly of Update Operations in Broadcast Environments (방송 환경에서 갱신위주의 이동 트랜잭션을 위한 동시성 제어 방법)

  • Kim, Chi-Yeon;Jung, Min-A
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.357-365
    • /
    • 2008
  • Broadcast is a efficient interactive method between a server and mobile clients via wireless channel and broadcast environments are incarnating as various applications. Most studies have been proposed in broadcast environments deal with read-only mobile transactions, many applications are emerging recently that need to manage the update transactions at mobile clients. So we propose a concurrency control for mobile transactions consisted mainly of update operations in broadcast environments. As an optimistic approach is applied for scheduling update transactions, repetitive aborts of update transactions are occur due to conflict between transactions. To solve this problem update transactions must have been executed with distributed manner, but unnecessary aborts are occur as well because of continuous restart. Thus, in this paper we propose a method that transactions are executed distributed manner and can avoid unnecessary aborts of update transactions. Proposed method has no unnecessary uplink and can save resources of mobile client.

  • PDF

On the Performance of Zero-Forcing Beamforming with Semi-orthogonal User Selection in Clustered Cell Coordinated Transmission (제로 포싱 (zero-forcing) 빔 형성과 반직교 기반 사용자 선정을 이용한 클러스터 (cluster) 기반 셀 협력 전송 방식의 성능에 대한 연구)

  • Yang, Jang-Hoon;Jang, Seung-Hun;Kim, Dong-Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, a simple and efficient three cell based clustered-cell coordination is proposed with well hewn zero-forcing beamforming (ZF-BF) with a semi-orthogonal user selection (SUS) as transmission and scheduling scheme. For a modified Wyner's channel model with two classes of user groups for a hexagonal cellular system, the upper bound of asymptotic sum rate scaling of ZF-BF in a proposed coordination is shown to be proportional to the number of transmit antennas and double logarithms of the number of users. The numerical results verify the efficiency of the proposed cell coordination. It is also numerically shown that ZF-BF with the SUS in CCCT actually achieves the upper bound of asymptotic sum rate sum rate scaling.