• Title/Summary/Keyword: channel scheduling

Search Result 337, Processing Time 0.138 seconds

Performance Evaluation of Interference Alignment Technique in Wireless LAN Environment (무선랜 환경에서 간섭정렬 기술의 성능 평가)

  • Yoon, Seokhyun;Shin, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1639-1644
    • /
    • 2016
  • In this paper, we consider the performance improvement that can be obtained with interference alignment (IA) technique applied to 802.11ac based multi-BSS WiFi service. To this end, we developed a system simulator consisting of a link-level PHY simulator, based on 802.11ac specification, and multi-BSS proportional-fair scheduler. Specifically, assuming perfect channel side information and synchronization of signals from multiple APs, we used a SLNR based interference alignment algorithm proposed in [13] and compared its performance with that of multiuser beamforming based time-sharing system. The performance was evaluated in terms of average throughput per BSS and 5% worst user throughput. The results show that 70 to 100% throughput gain can be obtained in this ideal scenario.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

A Custom Code Generation Technique for ASIPs from High-level Language (고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구)

  • Alam, S.M. Shamsul;Choi, Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.31-43
    • /
    • 2015
  • In this paper, we discuss a code generation technique for custom transport triggered architecture (TTA) from a high-level language structure. This methodology is implemented by using TTA-based Co-design Environment (TCE) tool. The results show how the scheduler exploits instruction level parallelism in the custom target architecture and source program. Thus, the scheduler generates parallel TTA instructions using lower cycle counts than the sequential scheduling algorithm. Moreover, we take Tensilica tool to make a comparison with TCE. Because of the efficiency of TTA, TCE takes less execution cycles compared to Tensilica configurations. Finally, this paper shows that it requires only 7 cycles to generate the parallel TTA instruction set for implementing Cyclic Redundancy Check (CRC) applications as an input design, and presents the code generation technique to move complexity from the processor software to hardware architecture. This method can be applicable lots of channel Codecs like CRC and source Codecs like High Efficiency Video Coding (HEVC).

Novel schemes of CQI Feedback Compression based on Compressive Sensing for Adaptive OFDM Transmission

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.703-719
    • /
    • 2011
  • In multi-user wireless communication systems, adaptive modulation and scheduling are promising techniques for increasing the system throughput. However, a mass of wireless recourse will be occupied and spectrum efficiency will be decreased to feedback channel quality indication (CQI) of all users in every subcarrier or chunk for adaptive orthogonal frequency division multiplexing (OFDM) systems. Thus numerous limited feedback schemes are proposed to reduce the system overhead. The recently proposed compressive sensing (CS) theory provides a new framework to jointly measure and compress signals that allows less sampling and storage resources than traditional approaches based on Nyquist sampling. In this paper, we proposed two novel CQI feedback schemes based on general CS and subspace CS, respectively, both of which could be used in a wireless OFDM system. The feedback rate with subspace CS is greatly decreased by exploiting the subspace information of the underlying signal. Simulation results show the effectiveness of the proposed methods, with the same feedback rate, the throughputs with subspace CS outperform the discrete cosine transform (DCT) based method which is usually employed, and the throughputs with general CS outperform DCT when the feedback rate is larger than 0.13 bits/subcarrier.

Downlink Space Division Multiple Access with Dynamic Slot Allocation for Multi-User MIMO Systems (복수 사용자 MIMO 시스템을 위한 동적 슬롯 할당 하향링크 공간분할 다중접속 기술)

  • 임민중
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.61-67
    • /
    • 2004
  • The next generation cellular wireless communication systems require high data rate transmissions and large system capacities. In order to meet these requirements, multiple antennas can be used at the base and mobile stations, forming MIMO(Multiple Input Multiple Output) channels. This paper proposes a MIMO SDMA(Space Division Multiple Access) technique with dynamic slot allocation which allows the transmitter to efficiently transmit parallel data streams to each of multiple receivers. The proposed technique can increase system capacities significantly by transmitting a larger number of data streams than conventional MIMO techniques while minimizing the performance degradation due to the beamforming dimension reduction.

Effect of Cooperative and Selection Relaying Schemes on Multiuser Diversity in Downlink Cellular Systems with Relays

  • Kang, Min-Suk;Jung, Bang-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • In this paper, we investigate the effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with fixed relay stations (RSs). Each mobile station (MS) is either directly connected to a base station (BS) and/or connected to a relay station. We first derive closed-form solutions or upper-bound of the ergodic and outage capacities of four different downlink data relaying schemes: A direct scheme, a relay scheme, a selection scheme, and a cooperative scheme. The selection scheme selects the best access link between the BS and an MS. For all schemes, the capacity of the BS-RS link is assumed to be always larger than that of RS-MS link. Half-duplex channel use and repetition based relaying schemes are assumed for relaying operations. We also analyze the system capacity in a multiuser diversity environment in which a maximum signal-to-noise ratio (SNR) scheduler is used at a base station. The result shows that the selection scheme outperforms the other three schemes in terms of link ergodic capacity, link outage capacity, and system ergodic capacity. Furthermore, our results show that cooperative and selection diversity techniques limit the performance gain that could have been achieved by the multiuser diversity technique.

Improving Voice-Service Support in Cognitive Radio Networks

  • Homayounzadeh, Alireza;Mahdavi, Mehdi
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.444-454
    • /
    • 2016
  • Voice service is very demanding in cognitive radio networks (CRNs). The available spectrum in a CRN for CR users varies owing to the presence of licensed users. On the other hand, voice packets are delay sensitive and can tolerate a limited amount of delay. This makes the support of voice traffic in a CRN a complicated task that can be achieved by devising necessary considerations regarding the various network functionalities. In this paper, the support of secondary voice users in a CRN is investigated. First, a novel packet scheduling scheme that can provide the required quality of service (QoS) to voice users is proposed. The proposed scheme utilizes the maximum packet transmission rate for secondary voice users by assigning each secondary user the channel with the best level of quality. Furthermore, an analytical framework developed for a performance analysis of the system, is described in which the effect of erroneous spectrum sensing on the performance of secondary voice users is also taken into account. The QoS parameters of secondary voice users, which were obtained analytically, are also detailed. The analytical results were verified through the simulation, and will provide helpful insight in supporting voice services in a CRN.

On Opportunistic Beamforming with Multiple-User Selection (오퍼튜니스틱 다중 빔 형성 시스템의 사용자 선택에 따른 성능 향상)

  • Ku, Mi-Hyeon;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.130-138
    • /
    • 2008
  • In this paper, we propose a user selection method to maximize the sum-rate of downlink over opportunistic beamforming. The throughput of an opportunistic beamforming with non-uniformly distributed or a small number of users can decrease. In order to improve the throughput, we propose a scheduling method that does not use SINR or SNR but uses the effective channel gain of each user obtained from the SINR or SNR feedback. The proposed method makes it possible to select users flexibly according to the distribution of users. In numerical results, we show that the proposed methods improve the average sum-rate about 60% when users are distributed non uniformly.

A Hierarchical Time Division Multiple Access Medium Access Control Protocol for Clustered Underwater Acoustic Networks

  • Yun, Changho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.153-166
    • /
    • 2013
  • A hierarchical time division multiple access (HTDMA) medium access control (MAC) protocol is proposed for clustered mobile underwater acoustic networks. HTDMA consists of two TDMA scheduling protocols (i.e., TDMA1 and TDMA2) in order to accommodate mobile underwater nodes (UNs). TDMA1 is executed among surface stations (e.g., buoys) using terrestrial wireless communication in order to share mobility information obtained from UNs which move cluster to cluster. TDMA2 is executed among UNs, which send data to their surface station as a cluster head in one cluster. By sharing mobility information, a surface station can instantaneously determine the number of time slots in a TDMA2 frame up to as many as the number of UNs which is currently residing in its cluster. This can enhance delay and channel utilization performance by avoiding the occurrence of idle time slots. We analytically investigate the delay of HTDMA, and compare it with that of wellknown contention-free and contention-based MAC protocols, which are TDMA and Slotted-ALOHA, respectively. It is shown that HTDMA remarkably decreases delay, compared with TDMA and Slotted-ALOHA.

Implementation of Policing Algorithm in ATM network (ATM 망에서의 감시 알고리즘 구현)

  • 이요섭;권재우;이상길;최명렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.181-189
    • /
    • 2001
  • In this thesis, a policing algorithm is proposed, which is one of the traffic management function in ATM networks. The proposed algorithm minimizes CLR(Cell Loss patio) of high priority cells and solves burstiness problem of the traffic caused by multiplexing and demultiplexing process. The proposed algorithm has been implemented with VHDL and is divided into three parts, which are an input module, an UPC module, and an output module. In implementation of the UPC module\`s memory access, memory address is assigned according to VCI\`s LSB(Lowest Significant Byte) of ATM header for convenience. And the error of VSA operation from counter\`s wrap-around can be recovered by the proposed method. ANAM library 0.25 $\mu\textrm{m}$ and design compiler of Synopsys are used for synthesis of the algorithm and Synopsys VSS tool is used for VHDL simulation of it

  • PDF