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Abstract 

 
In multi-user wireless communication systems, adaptive modulation and scheduling are 
promising techniques for increasing the system throughput. However, a mass of wireless 
recourse will be occupied and spectrum efficiency will be decreased to feedback channel 
quality indication (CQI) of all users in every subcarrier or chunk for adaptive orthogonal 
frequency division multiplexing (OFDM) systems. Thus numerous limited feedback schemes 
are proposed to reduce the system overhead. The recently proposed compressive sensing (CS) 
theory provides a new framework to jointly measure and compress signals that allows less 
sampling and storage resources than traditional approaches based on Nyquist sampling. In this 
paper, we proposed two novel CQI feedback schemes based on general CS and subspace CS, 
respectively, both of which could be used in a wireless OFDM system. The feedback rate with 
subspace CS is greatly decreased by exploiting the subspace information of the underlying 
signal. Simulation results show the effectiveness of the proposed methods, with the same 
feedback rate, the throughputs with subspace CS outperform the discrete cosine transform 
(DCT) based method which is usually employed, and the throughputs with general CS 
outperform DCT when the feedback rate is larger than 0.13 bits/subcarrier. 

 
Keywords: CQI, OFDM, feedback compression, compressive sensing 
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1. Introduction 

Recently, Orthogonal Frequency Division Multiple Access (OFDMA) system with adaptive 
channel information feedback is considered as one key technique to improve the system 
performance. OFDMA is a multiple access scheme based on Orthogonal Frequency Division 
Multiplexing (OFDM), which can achieve high frequency efficiency and less inter-symbol 
interference[1]. Hence, OFDMA systems have been considered as one of the most promising 
candidates for the next generation wireless systems, such as the next generation cellular and 
IEEE 802.16 systems [2][3]. To further increase system throughput, several advanced 
technologies are widely used in adapted OFDM systems. Adaptive Modulation and Coding 
(AMC) is one of these key enabling techniques to fully exploit channel information and attain 
high performance. The essence of AMC is to dynamically adjust the Modulation and Coding 
Scheme (MCS) in sequential subbands, providing an efficient way of maximizing the 
instantaneous usage of the wireless channel [4]. In a multi-carrier scheme like OFDM, the 
overall channel can be divided into several subchannels in time and frequency dimension, 
called subcarriers, which can be allocated to different connections[5]. In a multi-user system 
the subcarriers can be adaptively allocated to different users in order to exploit multi-user 
diversity [6], where knowledge about the channel quality indication (CQI) of the subcarriers 
has to be available at the transmitter side. Having the prefect channel knowledge at the 
transmitter, adaptive subchannel allocation schemes can achieve very good performance. 
However, in order to select among the users and choose modulation and coding scheme, all 
users need to feedback the CQIs of all the subbands in multi-user multi-carrier OFDM 
systems. This will lead to overwhelming large CQI feedback overhead. Hence, the feedback 
compression of CQI is needed.  

The challenge of designing a CQI feedback scheme with reasonably low overhead has 
spurred some research interests. Numerous CQI compression schemes have been proposed, 
which basically can be grouped into three main categories including scalar quantization 
methods with optimized SNR thresholds, SNR-limited feedback with max-SNR scheduling 
and schemes using lossy or lossless compression [7]. In [7], it is shown that the lossy 
compression scheme based on chunking discrete cosine transform (DCT) gives the best 
compromise between throughput and feedback rate for multicarrier systems. In [8], CQI 
feedback compression based on DCT in adaptive OFDM systems using scheduling is 
proposed. In [9], the performance of compression feedback based on DCT for adaptive 
MIMO-OFDM transmission with the spatial multiplexing mode is exploited.  

The recently introduced principle and methodology of compressive sensing (CS), which 
has gained a fast-growing interest in applied mathematics and image processing, allows the 
efficient reconstruction of sparse signals from a very limited number of measurements[10], 
[11]. The fundamental premise of applying CS is that the signal must be sparse or 
compressible, i.e., such signals have a representation in terms of a sparsity-inducing basis 
where most of the coefficients are zeros or small and only a few are large. Rather than 
uniformly sampling the signal, CS computes the inner products between the signal and column 
vectors of randomized measurement matrix. The signal is then recovered with high probability 
by solving an optimization that ensures the recovered signal consistent with the measurements 
as well as sparse. CS reconstruction has been shown to be robust to multi-level quantization of 
the measurements [12]. By exploiting the fact that many natural signals are sparse or 
compressible, CS provides a new framework to jointly measure and compress signals that 
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allows less sampling and storage resources than traditional approaches based on Nyquist 
sampling.  

In this paper, we mainly exploit the scheme of CQI feedback compression based on CS 
theory. Our work is an explorative research. The proposed schemes exploit the fact that the 
channel quality at a certain time and frequency is highly correlated with the channel quality at 
a neighboring time and/or frequency. Our work provides a new idea to compress CQI and the 
main target is to cause the attention of peer and make some beneficial discussion. 

The main contributions of our work are the following:  
(i) The general CS method is firstly introduced to CQI feedback compression for adaptive 

OFDM systems to reduce the feedback overhead and the processing complexity at terminals.  
(ii) A novel CQI feedback scheme based on subspace CS is proposed via further research 

on the design of measurement matrix with general CS. The proposed CQI feedback scheme 
based on subspace CS reduces the number of measurements for a given reconstruction 
performance by exploiting the fact that the sparse signal resides in a low dimension subspace. 
The feedback rate is greatly decreased and system performance is improved.  

It is verified by simulations that the proposed methods have the potential of reducing the 
CQI feedback overhead under multipath channel conditions. With the same feedback rate, the 
throughputs with subspace CS outperform the generally used discrete cosine transform (DCT), 
and the throughputs with general CS outperform DCT when the feedback rate is larger than 
0.13 bits/subcarrier. 

The remaining of the paper is organized as follows. Section 2 presents system model and 
problem description, section 3 addresses the CQI feedback compression based on CS, section 
4 compares the throughput performance of CQI feedback compression schemes based on CS 
with that of DCT and discusses simulation results. Finally, section 5 draws the conclusions and 
envisions future works. 

2. System Model and Problem Description 
Fig. 1 shows the system model where the signal processing is divided into multi-user 
scheduling, adaptive modulation, and OFDM modulation (IFFT). We consider an adaptive 
OFDMA cellular system, where both the BS and the MS have a single antenna and one BS 
serves a finite number (U) of users by assigning users with different sub-carriers and time 
slots. In order to exploit the adaptive modulation schemes, each user has to feed back its 
channel information periodically according to the speed through control channel to BS. 
OFDMA is employed to subdivide the downlink bandwidth into cN  orthogonal subcarriers, 
where the channel response of each subcarrier is assumed to be flat. Note, that a subcarrier can 
also be interpreted as a representative of a block of subcarriers, called chunks or clusters. The 
users are assigned to each subcarrier or chunk by multiuser scheduling function depending on 
CQI which is fed back to base station via feedback channel.  

The channel for each user is modeled by a L-tap linear filter, and the response for user u is 
{ (0), (1),..., ( 1)}u u uh h h L − . The time interval between the adjacent paths adopted the channel 
model of the ITU Vehicular A. )(nuH is the channel frequency response of user u  at 
subcarrier with index n  at each time slot N∈k . )(nuH  is expressed as  

2 /

1
( )

L
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where  is channel gain corresponding to the th path used in the tapped delay line model 
and  is the number of the subcarriers. 

From this, it follows that the instantaneous SNR of user  of subcarrier with index 
 in time slot  is given by 

                                                     (2) 

Where  is average SNR.  
 

 

Fig. 1. Block diagram of multi-user downlink OFDMA systems 

In this paper, a Max-SNR scheduler is employed to allocate the subcarriers to the user with 
the best SNR conditions. Also, a modulation scheme is selected for each subcarrier based on 
the CQI value. In this work, the following modulation schemes are considered: BPSK, 
4-QAM, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, and 256-QAM.  

At a given time instant these SNRs are collected in a vector of length , 

, at each terminal, the SNRs on all subcarriers are 
compressed and transmitted to the transmitter. At the transmitter, base station selects the best 
user and chooses appropriate modulation and coding scheme based on the reconstructed 
SNRs. The reconstructed SNRs are denoted as  

                                                            (3) 

The mean square error (MSE) between the reconstructed SNRs and the real SNRs on each 
subcarrier is defined as  
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}||{|| 2γγ −=
∧

EMSE                                                        (4) 

3. CQI Feedback Compression Based on Compressive Sensing  

3.1 Compressive Sensing Backgrounds 
CS is a new sampling and reconstruction method for signals that are known to be sparse or 
compressible in some basis. Without loss of generality, we assume an N-dimensional signal x  
to be K-sparse in a sparsity-inducing basis { ib }, that is, there are at most K non-zero 

coefficients { iα } in the basis expansion ∑= i iibx α  denoted as Bα . The signal is 
K-compressible if it is well approximated by the K most significant coefficients in the 
expansion. The basis function widely used includes Inverse Discrete Fourier Transform 
(IDFT), DCT, Haar, chirplet, Gabor and curvelet basis etc.  

Within the compressive sensing framework, measurements are taken not directly by 
sampling the sparse signal but by measuring a few of linear projections of the underlying 
signal. The signal is sampled using M  measurements with the measurement 
vectors ),,1( Mii =φ , which means iiy φx,= . The compact representation is 

ΦBαΦxy == , where y  is called vector of measurements, Φ  is the measurement matrix 
which models the measurement system and α  is the N-dimensional vector of coefficients 
which includes at most K non-zero coefficients. The reconstruction from y  equals to 
determining the sparsest signal that explains the measurement y . The strictest measure of 
sparsity of the signal is the 0l  pseudonorm of the coefficient vectorα . Unfortunately, the 0l  
pseudonorm is combinatorially complex to optimize. Instead, compressive sensing enforces 
sparsity by minimizing the 1l  norm, ∑= i iα1

α . Minimizing the 1l  norm has been 

theoretically proven equivalent to minimizing the 0l pseudonorm with very high probability 
[13].  

Specifically, exact recovery requires that the measurement vectors { }iφ  are sufficiently 
incoherent with the sparsity basis { ib }. That is, { }iφ  does not have a compact representation 
on { ib } and likewise, { ib } does not have a compact representation on { }iφ  [14]. Incoherence 
can be guaranteed with very high probability if the measurement matrix Φ  is drawn randomly 
from a variety of possible distributions such as normal distribution. The number of 
measurements necessary to guarantee recovery using a random measurement system is 
approximately ))/log(( KNKOM = .  

3.2 The Implementation of CQI Feedback Compression Based on CS  
Depending on the Doppler effect and the delay spread, the SNRs of neighboring subcarriers in 
both time and frequency are highly correlated. Therefore, the SNRs on all subcarriers are the 
sparse and compressible signal. To make the feedback transmission as efficient as possible, 
both time and frequency correlation should be exploited. Our scheme is to use the CS for 
exploiting correlation in frequency, due to its efficiency. As for time-domain correlation, we 
use the method proposed in [8], which suggests that the process is sub-sampled, by 
transmitting the quantizer indices every G:th block, and estimating the missing blocks with an 
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MMSE estimator at the base station.  
Block diagrams of the encoding and decoding process of feedback information with CS 

are given in Fig. 2. At a given time instant the SNRs on all subcarriers are collected in a vector 
of length cN  and encoded using CS, quantized by a kind of appropriate design of scalar 
quantizer and then subsampled (subsampling with the factor G=2 in this work). At the 
receiver, the inverse process is applied and the compressive sensing reconstruction algorithm 
is exploited to reconstruct the SNRs of all users. In this work, we don’t discuss what kind of 
quantizer should be employed here because this is not our main concern.  

 

FFT C
alculate 

Subcarrier SN
R

C
S 

M
easurem
ent 

System
 

Φ

A
ppropriate 

Scalar 
Q
uantizer Q

Sub

-sam
pling

C
S 

R
econstructio
 

O
M
P

A
M
C

Rx Data

Nc M

U
psam
pling

Q-1

Tx 
feedback

Received 
feedback

M

NcM M

 

Fig. 2. Diagram of the encoding and decoding of feedback information with CS 

The classical compressive sensing reconstruction algorithms include linear programming 
(LP), matching pursuit (MP), orthogonal matching pursuit (OMP) and etc. In the following, 
we exploit OMP to reconstruct the CQI feedback information.  

This is an iterative algorithm that calculates sequences of partial estimates jx̂ , 

approximations jy  to the observation vector y , and residuals jj yyr −=  as summarized in 
the following.  

Initialization ( 0=j ): define the residual yr =0  and the empty index set φ=0S . 

Steps at the j th iteration ( ,2,1=j ):  

(1). Determine an index js  that satisfies  

{ } srr φφ ,max, 1\,,11
1

−∈−
−

= jSMssj
j

j 
                                            (5) 

where sφ  denotes the s th column of Φ .  

(2). Augment the index set as { }jjj sSS ∪= −1 . (Note that jS j = . )  

(3). Calculate a new estimate jx̂  such that it has zero entries outside the index set jS  i.e., 

supp{ } jj S=x̂ , and the nonzero entries (combined into a j -dimensional vector denoted by 

jSjx̂ ) are given by the solution of a least-squares problem:  
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                                           (6) 

Here, the Q j×  matrix 
jSΦ  comprises the columns of Φ  indexed by jS  and †

jSΦ  is its 
Moore-Penrose pseudoinverse.  

(4). Calculate a new approximation to the observation vector y  and a new residual:  

ˆˆ
j j

j j S j S
= =yΦxΦx , j j=r y - y .                                 (7) 

These steps are repeated until a stopping criterion is satisfied. This may be a predefined 
number of iterations (corresponding to a fixed known sparsity S ) or a required approximation 
quality (e.g., the norm of the residual jr  is required to be below a given threshold ). Upon 

termination (at the final iteration, say, j K= ), OMP outputs the K -sparse vector ˆˆ K=x x .  

In our proposed CQI feedback compression methods based on CS, there is a direct 
connection between the dimension of measurement matrix (scilicet the number of 
measurement values) and the CQI feedback rate. Thus, it is necessary to explore the 
compression measurement matrix of CS.  

 The design of measurement matrix is an important part of compressive sensing theory. 
The purpose of designing measurement matrix is to obtain M measurement values by 
sampling and guaranteeing that the original signal or the sparse coefficient vector in certain 
sparse basis can be reconstructed. Obviously, reconstruction is impossible if the information 
of x  is destroyed in measurement process. Incoherence characteristic between measurement 
matrix and sparse basis is the foundation of CS theory’s better properties. The measurement 
matrix, each entry of which is taken from an i.i.d. random Gaussian distribution, is widely 
employed due to its incoherence to other basis functions. Here, we called the CS method 
employing random Gaussian measurement matrix ‘general CS method’.   

3.3 CQI Feedback Compression Based on Subspace CS  
Along with the further research on CS, we found that there is certain connection between the 
required number of measurement values and the design of measurement matrix on condition 
that the reconstruction effect can be guaranteed. It is clear that the performance depends on the 
signal energy that the measurement matrix can collect, which is approximately proportional to 
the number of measurements. Further, on the premise of the reconstruction effect would be 
guaranteed, the more signal energy information the measurement matrix captures, the smaller 
number of the measurement values is needed. If the underlying signal’s characteristic is 
considered when we design the measurement matrix, the number of required measurement 
values will greatly reduced. Luckily, the design of the measurement matrix discussed in [15] 
just anastomosed our thought.  

The i.i.d. random measurement scheme for general compressive sensing provides 
universality for signals with different structure. However, since the compressive 
measurements are not tailored to the underlying signals, the measurement matrix is not 
efficient at gathering signal energy. To improve the performance of general CS, we exploit the 
fact that a sparse signal resides in a low dimension subspace and we can capture most of the 
signal energy with as few as K  measurements just by projecting the signal into its own 
subspace. Furthermore, the information of the signal subspace can be inferred from known 
signal characteristics as a priori or learned from the compressive measurements of training 
data[16]. The use of training signals is widely employed in communication systems. To this 
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end, we assume that at the time of acquisition, the signal subspace is known.  
Here, we reconsider an N-dimensional signal x  to be K-sparse in a sparsity-inducing basis 

{ ib }, that is, there are at most K non-zero coefficients { iα } in the basis expansion 

∑= i kibx α  denoted as Bα . The signal is K-compressible if it is well approximated by the K 
most significant coefficients in the expansion.  

We assume ],,,[
21 Knnn bbbD = , where { }Nni ,,2,1 ∈  for Ki ,,1= . 

knb  is the 
vector of B  corresponding to the k -th non-zero entry. The signal x  is represented as 

Dθx = , where θ  is a 1×K  vector with all non-zero entries.  
We design the subspace measurement matrix as follow  

TT DD)G(DΦ 1−=                                                          (8) 

 where G  is a KM ×  random matrix, and each entry of G  is taken from an i.i.d. random 
distribution. Adding of the random matrix G  is required because it leads to measurements 
equally important in probability. Thus, if any measurement goes wrong, it will not lead to 
severe performance degradation. Without G , what are measured are the signal transform 
coefficients. Since failing to measure a large coefficient may lead to wrong results, such 
transform based schemes are not robust.  

The performance of compressive sensing based on compressive measurement can be 
significantly improved by exploiting the underlying signal structure, leading to the 
requirement of far fewer measurements. A subspace compressive measurement matrix can be 
constructed based on the estimated signal subspace model. Although the subspace 
compressive measurement does not provide universality for all signals in the NR  space, it 
does provides universality for signals in a specific subspace. We called the compressive 
sensing method with the subspace measurement matrix ‘subspace CS’.  

In [15], a set of subspace compressive detectors based on the subspace measurement matrix 
are proposed for sparse signal detection problem. In our work, we firstly apply subspace CS to 
solve the problem of CQI feedback compression, thus leading to fewer measurements than 
general CS. The feedback rate can be greatly reduced on condition that the reconstruction 
effect can be guaranteed.  

4 Experiments and Discussions 
In this section, simulation results are provided to investigate the performance of the CQI 
feedback compression methods based on CS. For comparison purposes, the conventional DCT 
based method which is widely employed is also illustrated.  

In the following, a one cell downlink OFDMA scenario, where both BS and MS have a 
single antenna and each BS serves 30 users, is considered. The channel is frequency selective 
Raleigh fading channel with six paths and the average SNR is assumed 20 dB. The number of 
subcarriers 1024=cN  and a target bit error 310−=TBER  is assumed. The required SNRs 
of the different modulation levels (BPSK, 4-QAM, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 
128-QAM and 256-QAM) under the target BER are calculated based on [17]. Besides, the 
vehicular speed is 75 km/h and the carrier frequency  is 5GHz. We do not discuss what kind of 
quantizer should be employed here because this is not our main concern. According to [18], 
the quantization levels depend on the number of users, and when the quantization law is 
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designed proportionally most of the multiuser diversity can be efficiently captured with as few 
as 2-4 quantization bits. In this work the output of quntizer is assumed to be 5 bits. Hence, the 
bit number of general CS compression feedback amounts to 5×M, where M is the number of 
measurements.  

Finding the optimal sparse representation of signal is the foundation and precondition of 
compressive sensing theory. Only by choosing suitable basis to represent signal can we 
guarantee the sparse degree of signal. Consequently, the precision of signal reconstruction can 
be guaranteed. In our work, OFDM system is employed. To maximally show the superiority of 
compressive sensing theory, we focus on the performance of CQI feedback compression based 
on CS by using IDFT in our experiments. In recent years, another hot for sparse representation 
is sparse decomposition based on redundant dictionaries. This is a new theory of signal 
representation. A lot of research show that it is more effective to represent sparse signals based 
on overcomplete redundant dictionaries [19] [20]. Thus, there may be better sparse 
representation of the underlying class of signals. We will do this work in the future due to the 
limitation of our knowledge and time.   

 The measurement matrix of subspace measurement compression, TT DD)G(DΦ 1−= , is a 
complex matrix because IDFT basis is composed of complex number. The measurement 
values which are obtained by using measurement matrix multiply the CQI signal are complex 
numbers, including real and imaginary parts. If the dimension of measurement matrix in 
subspace CS method is denoted by 1M  and every real number is quantized to 5 bits, the 
number of bits of CQI feedback with subspace CS is 52 1 ××M bits.  

As fortraditional methods of orthogonal transformation such as DCT, M  key components 
after orthogonal transformation needs to be saved and more space is needed to store their 
location information. Thus the bit number of DCT compression feedback is equal to 









+×

M
N

M rb
2log5 , where M  denotes the number of feedback chunks and Nrb is the number 
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Fig. 3. The MSE between the reconstructed SNRs and the real SNRs on each subcarrier 

The MSE between the reconstructed SNRs and the real SNRs on each subcarrier is given in 
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Fig. 3 The rates of CQI feedback for the three compression techniques are the same 
(1 bits/subcarrier). As can be seen from Fig. 3, the MSE between the real SNRs and the 
reconstructed SNRs (distributing around 10-30) by general CS and subspace CS are far smaller 
than that (distributing around 10-5) reconstructed by IDCT, which shows that the SNRs 
reconstructed by the corresponding reconstruction algorithm of CS compression are much 
more accurate. 

Fig. 4 shows the rate of CQI feedback on each subcarrier and the corresponding achieved 
throughput using a max-SNR scheduler with an average SNR per user per symbol of 20 dB 
with 30 users. 

From Fig. 4, we can see that the throughput performance with subspace CS is the best. With 
the feedback rate smaller than 0.2637 bits/subcarrier, the throughputs with subspace CS 
present a rising tendency along with the increase of feedback rate. When the feedback rate is 
near 0.2637 bits/subcarrier, the throughputs with subspace CS approach the ideal throughputs. 
Comparatively, the throughputs with general CS approach the ideal throughputs when the 
feedback rate is near 0.3271 bits/subcarrier. As for DCT, the throughputs are continuously 
rising along with the increase of feedback rate. When the feedback rate is near 0.6592 
bits/subcarrier, the throughputs with DCT method gradually approach the ideal throughputs. 
In addition, from Fig. 4, we can also see that the throughputs with DCT are superior to the 
throughputs with general CS  when the feedback rate is smaller than 0.1181 bits/subcarrier. 
However, this is insignificant because they all suffer from great throughput loss in this 
situation and the feedback rate with such poor throughputs will not be employed in practical 
application.  
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Fig. 4. Throughput as a function of the rate of CQI feedback on every subcarrier 

Clustering is widely adopted to reduce feedback overhead in many literatures.It suffers 
from decline of throughput performance because the subcarriers near the cluster boundary are 
likely to experience mismatch. The appropriate cluster size is determined by delay profile of 
channel. In this work, we also exploit the performance of CQI feedback compression based on 
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CS with different sizes of cluster.  
Fig. 5 displays the rate of CQI feedback with cluster size 2 and the corresponding achieved 

throughput using a max-SNR scheduler with an average SNR per user per symbol of 20 dB 
with 30 users.We can see from Fig. 5 that the achieved throughputs of the ideal feedback with 
cluster=4 are decreased somewhat comparing with the throughputs of the ideal feedback 
without clustering. The compressive feedback method based on subspace CS has the best 
throughput performance. The throughputs of the compressive feedback methods based on 
subspace CS and general CS rise continuously until the feedback rate reaches 0.2246 
bits/subcarrier and 0.2637 bits/subcarrier, respectively. When the feedback rate is near 0.542 
bits/subcarrier, the throughputs with DCT method gradually approach the ideal throughputs. 
From Fig. 5, we also can see that the throughputs with DCT exceed the throughputs with 
general CS when the feedback rate is below 0.13 bits/subcarrier.  
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Fig. 5. Throughput as a function of the rate of CQI feedback with cluster=2 

Fig. 6 shows the rate of CQI feedback and the corresponding achieved throughput with 
cluster size 4. We can see that the gap between the ideal feedback without clustering and 
cluster=4 in Fig. 6 is much bigger than that in Fig. 5. The throughput performance with 
subspace CS still outperforms that with general CS or DCT. With feedback rate smaller than 
0.2246 bits/subcarrier, the throughputs with subspace CS present a rising tendency along with 
the increasing of feedback rate. When the feedback rate is near 0.2246 bits/subcarrier, the 
throughputs with subspace CS approach ideal throughputs with clustering, while the 
throughputs with general CS approach it when the feedback rate is near 0.2832 bits/subcarrier. 
As for DCT, the throughputs rises continuously along with the increasing of feedback rate. 
When the feedback rate is near 0.5273 bits/subcarrier, the throughputs with DCT method 
gradually approach ideal throughputs with clustering. What’s more, it is also can be seen from 
Fig.6 that the throughputs with DCT are superior to the throughputs with general CS with the 
feedback rate smaller than 0.1318 bits/subcarrier.  

The rate of CQI feedback and the corresponding achieved throughput with cluster size 8 is 
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shown in Fig.7. From Fig.7, we can see that the throughput of the ideal feedback with 
cluster=8 reduced to 4.171 bits/subcarrier and the gap between the throughputs of ideal 
feedback without clustering and cluster=8 is very large. The throughputs of three methods 
based on subspace CS, general CS and DCT present a rising tendency along with the increase 
of feedback rate. Their throughputs gradually approach the ideal throughputs when the 
feedback rate reached 0.2246, 0.2832 and 0.4766 bits/subcarrier, respectively. When the 
feedback rate is larger than 0.1514 bits/subcarrier, the throughputs with general CS 
outperform the throughputs with DCT.  
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Fig. 6. Throughput as a function of the rate of CQI feedback with cluster=4 
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Fig. 7. Throughput as a function of the rate of CQI feedback with cluster=8 

From Fig. 4, Fig. 5, Fig. 6 and Fig.7, we can oberserve  that the gap between the 
throughputs of ideal feedback with clustering and without clustering became larger with the 
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increase of cluster size. This is because that clustering suffers from decline of performance due 
to mismatch between subcarriers at the edges of the cluster boundaries. The performance of 
the CQI compressive feedback methods based on subspace CS and general CS also decreased 
with the increase of cluster size. The application precondition of the methods based on 
compressive sensing is that the signal is sparse. The correlation between the values of CQI 
signal, decreases gradually as the size of cluster increases. In other words, the sparse level is 
gradually decreasing. This is one reason why methods based on compressive sensing performs 
worse and worse when the size of cluster increases. Despite the above-mentioned problem, the 
method based on subspace CS still maintains good performance, because it is much easier to 
capture the energy information of signals due to the special design of measurement matrix. In 
contrary, DCT based method, with the increase of cluster size, Nrb in 








+×

M
N

M rb
2log5  which 

calculates the rate of feedback is decreasing, and the required bit number of indicating the 
location information of M most important coefficients is further decreasing.  

The above analysis and simulation assumed an error-free feedback link. However, in 
practical systems, noise exists in feedback channel. Hence, signals at the receiver are 
corrupted by different kinds of noise such as quantization noise and feedback noise. In the 
following simulations, we exploit the performance of different feedback methods influence by 
noise. Fig. 8 shows the throughput performance of different methods without clustering under 
varying SNR. Fig. 9 is the throughput performance with cluster size 4 under varying SNR. 
From the two figures, we can see that the throughputs of three methods are continuously 
raising with the increasing SNR. The throughputs performance of subspace compressive 
feedback method is the best ,followed by general CS. The performance of DCT based method 
is worst and its throughputs outperform general CS only with SNR below 2 dB.  
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Fig. 8. Throughput without clustering as a function of SNR 

As can be seen from the two figures, the methods above have better performance with SNR 
beyond 15 dB. This is because the reconstructed CQI sequence is used for scheduling or AMC, 
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which could tolerate certain degree of noise. Moreover, for DCT based method, if one or 
several key components of the M most important components are lost in transmission 
processes, the reconstruction performance decreased seriously. Thus the method based on 
DCT has poor anti-interference ability. By contrast, the methods based on CS have better 
anti-interference ability. Because every entry in the measurement vector is equally 
importantand the loss of one or several enties in trasmission will result in little unfavorable 
effect on the reconstruction performance.  
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Fig. 9. Throughput with cluster size 4 as a function of SNR 

According to our experiments, it is very clear that with far fewer measurements, the CQI 
feedback compression based on subspace CS has greatly improved the throughput 
performance by exploiting subspace information. Although CQI feedback compression based 
on general CS might require more measurements than subspace CS, it has a better  throughput 
performance than the DCT based method does.  

The general CS method has a simple design because it only needs a measurement matrix at 
the user side and the reconstruction algorithm which has a high computational complexity is 
processed at base station. Comparatively, in order to design measurement matrix, the subspace 
CS method needs to obtain the underlying signal characteristics by using training sequence. It 
increases the system overhead although the high-comutational reconstruction algorithm is also 
processed at base station. However, it is worth mentioning that the subspace CS method 
greatly reduces the rate of CQI feedback, which is what we expected. From Fig. 4, Fig. 5, Fig. 
6 and Fig. 7, we can see that the performance of subspace CS method is superior to general CS 
method at the same feedback rate no matter with clustering or without clustering.  

The special design of measurement matrix with subspace CS can guarantee the exact 
recovery of signal before the measurement number 1M  becomes smaller than K . However, 

K×4 ~ K×5  or more measurement values are required to guarantee the exact recovery of 
signal with general CS method. Because the random measurement matrix with each entry 
taken from an i.i.d. random distribution is employed by general CS, the lower-dimension 
random Gaussian measurement matrix can not guarantee that it can capture enough signal 
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energy information for the reconstruction algorithm to perfectly reconstruct signal with high 
probability. To ensure that general CS method can stably reconstruct signal with high 
probability, we must increase the dimension of measurement matrix to get more measurement 
values.  

5. Conclusions and Future Works 
In this work, we have shown that exploiting correlation in frequency with compressive sensing 
can achieve considerable reduction in CQI feedback rate. Firstly, the general CS method is 
introduced to reduce CQI feedback overhead for adapted OFDM system. Secondly, via further 
research on the design of measurement matrix with general CS, a novel CQI feedback scheme 
based on subspace CS is proposed by exploiting the subspace information of the underlying 
signal and the feedback rate is greatly decreased. Finally, Simulation results show both of the 
proposed two methods have better throughput performance than the commonly used Discrete 
Cosine Transform based method. Therefore, CS is a good choice from the viewpoint of 
trade-off between system throughput and feedback rate for adapted OFDM transmission. 

So far, the simulations results have shown the effectiveness of the proposed two methods. 
From our experiments, we found that one realization of Φ  in general CS and G  in subspace 
CS can be selected for each feedback to avoid the worst scenario. Especially with general CS, 
one realization of Φ  would lead to different reconstruction effect when the number of 
measurements is small. It has been shown in [21] that the performance of CS sampling can be 
improved if the random measurement matrices are optimized to some extent. However, the 
method in [21] leads to optimized but unstructured measurement matrices. Therefore, large 
memory space and computation demanding resources are needed, making the implemetation 
prohibitively expensive. Hence, it is not the best choice. One of our future works is to find 
better schemes to optimize the measurement matrices and exploit the impact on our CQI 
feedback compression caused by different measurement matrices. In addition, since the 
quantization is very important in feedback link, future research may also include investigating 
the impact of different kinds of quantization. Another future focus is how to find the best 
sparse representation to CQI signal of OFDM model from overcomplete redundant atom 
dictionary or numerious orthogonal basis dictionaries, which can further reduce the feedback 
rate.  
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