• Title/Summary/Keyword: channel scheduling

Search Result 337, Processing Time 0.029 seconds

MU-MIMO Scheduling using DNN-based Precoder with Limited Feedback (심층신경망 기반의 프리코딩 시스템을 활용한 다중사용자 스케줄링 기법에 관한 연구)

  • Kyeongbo Kong;Moonsik Min
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.141-144
    • /
    • 2023
  • Recently, a joint channel estimation, channel quantization, feedback, and precoding system based on deep-neural network (DNN) was proposed. The corresponding system achieved a joint optimization based on deep learning such that it achieved a higher sum rate than the existing codebook-based precoding systems. However, this DNN-based procoding system is not directly applicable for the environments with many users such that a specific user selection can potentially increase the sum rate of the system. Thus, in this letter, we study an appropriate user selection method suitable for DNN-based precoding.

Design of Advanced Metering Infrastructure Network Based on Multi-Channel Cluster (다중채널 클러스터 기반의 AMI 네트워크 설계)

  • Choi, Seok-Jun;Shim, Byoung-Sup;Chae, Soo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.3
    • /
    • pp.207-215
    • /
    • 2013
  • This paper is channel assignment and scheduling techniques for efficient wireless AMI network. In AMI system, the multi-channel cluster network to be proposed defines the communication channel between NC (Network Coordinator) and CDA (Clustered Data Aggregator) as the network channel. CDA and OMD(Out Meter display) and communication channel between SMD(Smart Meter Device) are defined as the group channel. AMI network of the multi-channel cluster based in which the network channel and group channel is mixed increases the administration efficiency through the physical/logical consumer channel clustering. The reliability of inspection data through the channel use distinguished between the adjacent cluster is enhanced. In addition, the fast aggregation of data is possible and the size of a metering network is increased through the channel allocation of the multichannel cluster based.

A Design of Bandwidth Allocation Scheme with Priority Consideration for Upstream Channel of Ethernet PON (Ethernet PON에서 서비스 클래스별 우선 순위를 고려한 상향 채널 대역 할당 기법)

  • 이호숙;유태환;문지현;이형호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.859-866
    • /
    • 2003
  • In this paper, we designed the bandwidth allocation scheme with priority consideration for upstream channel access of EthernetPON. The objective of our scheme is to control the multi services in more effective way according to their CoS(Class of Service) or QoS(Quality of Service). The designed scheme considers transmission priority in the both side of OLT and ONU. In the OLT's view, the Two-step scheduling algorithm is applied with which we can support multiple bandwidth allocation policies simultaneously, i.e. SBA for the time-sensitive, constant rate transmission services and DBA for the best-effort services. This Two-step scheduling algorithm reduces the scheduling complexity by separating the process of transmission start time decision from the process of grant generation. In the ONU's view, the proposed scheme controls 8 priority queues of the 802.1d recommended 8 service classes. Higher priority queue is serviced in prior during the allowed GATE time from OLT. The OPNET modeling and simulation result compares the performance of each bandwidth allocation policy with SBA or DBA only approach.

A Joint Power Allocation and Scheduling Algorithm for CDMA-based High-rate Packet Data Systems (CDMA기반 고속 패킷 데이터 전송 시스템을 위한 전력제어가 결합된 스케쥴링 알고리즘)

  • Koo In-Soo;Kim Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • In the case of CDMA-based packet data systems such as 1xEV-DO which are designed to support high rate services, BSs transmit data packets with a maximum power based on time multiplexing mode such that only one user can be serviced at a time. In this paper, we propose a joint power allocation and scheduling algorithm for 1xEV-DO-like systems in which we adopt a code division multiplexing (CDM) transmission method in the downlink common channel in order to utilize channel orthogonality such that we can serve more than one user at a time slot especially when there exist remaining resources after serving the firstly selected user by the scheduler. Simulation results demonstrate that the proposed scheme can improve the performances of conventional schemes such as the maximum rate and the proportional fair algorithms.

  • PDF

Feedback-Assisted Multipolling Scheme for Real-Time Multimedia Traffics in Wireless LANs (무선 LAN에서 실시간 멀티미디어 트래픽을 위한 피드백 기반의 다중폴링 방법)

  • Kim Sun-Myeng;Cho Young-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.495-507
    • /
    • 2006
  • In wireless local area networks (WLANs), the successful design of scheduling algorithm is a key factor in guaranteeing the various quality of service (QoS) requirements for the stringent real-time constraints of multimedia services. In this paper we propose a multipolling-based dynamic scheduling algorithm for providing delay guarantees to multimedia traffics such as MPEG streams. The dynamic algorithm exploits the characteristics of MPEG stream, and uses mini frames for feedback control in order to deliver dynamic parameters for channel requests from stations to the point coordinator (PC) operating at the access point (AP). In this scheme, the duration of channel time allocated to a station during a superframe is changed dynamically depending on the MPEG frame type, traffic load and delay bound of the frame, etc. Performance of the proposed scheme is investigated by simulation. Our results show that compared to conventional scheme, the proposed scheme is very effective and has high performance while guaranteeing the delay bound.

MDA-SMAC: An Energy-Efficient Improved SMAC Protocol for Wireless Sensor Networks

  • Xu, Donghong;Wang, Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4754-4773
    • /
    • 2018
  • In sensor medium access control (SMAC) protocol, sensor nodes can only access the channel in the scheduling and listening period. However, this fixed working method may generate data latency and high conflict. To solve those problems, scheduling duty in the original SMAC protocol is divided into multiple small scheduling duties (micro duty MD). By applying different micro-dispersed contention channel, sensor nodes can reduce the collision probability of the data and thereby save energy. Based on the given micro-duty, this paper presents an adaptive duty cycle (DC) and back-off algorithm, aiming at detecting the fixed duty cycle in SMAC protocol. According to the given buffer queue length, sensor nodes dynamically change the duty cycle. In the context of low duty cycle and low flow, fair binary exponential back-off (F-BEB) algorithm is applied to reduce data latency. In the context of high duty cycle and high flow, capture avoidance binary exponential back-off (CA-BEB) algorithm is used to further reduce the conflict probability for saving energy consumption. Based on the above two contexts, we propose an improved SMAC protocol, micro duty adaptive SMAC protocol (MDA-SMAC). Comparing the performance between MDA-SMAC protocol and SMAC protocol on the NS-2 simulation platform, the results show that, MDA-SMAC protocol performs better in terms of energy consumption, latency and effective throughput than SMAC protocol, especially in the condition of more crowded network traffic and more sensor nodes.

Improved MSI Based Scheduling and Admission Control Algorithm for IEEE 802.l1e Wireless LAN (IEEE 802.l1e 무선랜에서 MSI를 이용한 개선된 스케줄링 및 수락제어 알고리즘)

  • Yang, Geun-Hyuk;Ok, Chi-Young;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.99-109
    • /
    • 2007
  • IEEE 802.lie is being proposed to improve QoS by IEEE 802.11 working group. HCCA (HCF Controlled Channel Access) a centralized polling based mechanism of IEEE 802.11e, needs a scheduling algorithm that decides on how the available radio resources are allocated to the polled STAs. In IEEE 802.l1e standard Reference Scheduler is presented. Reference Scheduler Polls all STAs in a polling list by the same interval that causes ineffectively frequent polling. It increases not only the overhead but it decreases the TXOP (Transmission Opportunity) utilization. In this paper, we propose the scheduling and admission control algorithm that poll stations depending on the MSI (Maximum Service Interval)o( stations to solve these shortcomings. In our proposed algorithm a station is polled by an interval close to its MSI, so polling overhead decrease and TXOP utilization increases than Reference Scheduler. Simulation results show that our algorithm outperforms Reference Scheduler. Our algorithm maintains higher aggregate throughput and services mere stations than Reference Scheduler.

Novel Bandwidth Scheduling Algorithm for DOCSIS 3.0 Based Multiple Upstream Channels (DOCSIS 3.0 기반의 다중 상향 채널 환경에서 새로운 대역 스케줄링 알고리즘 제안)

  • Jung, Joon-Young;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1142-1150
    • /
    • 2009
  • In this paper, we propose an novel bandwidth scheduling algorithm for the MAC protocol employed by the Data Over Cable Service Interface Specifications (DOCSIS) 3.0 compliant cable networks. The proposed algorithm statistically improves the chances of request piggybacking to minimize the access delay. It utilizes the piggyback request feature of the segment packets that has been newly specified in DCOSIS 3.0. In DOCSIS 3.0, a bandwidth request can be granted to several upstream channels within an upstream bonding group. The grant on each individual channel is treated as a segment packet. We find the optimal segment placement to minimize the access delay in the proposed algorithm. We also use a self-similar traffic model for simulation and analysis to evaluate the performance of the proposed algorithm.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Preemption-based Service Differentiation Scheme for Optical Burst Switching Networks (광 버스트 교환망에서 Preemption 기반 서비스 차별화 기법)

  • 김병철;김준엽;조유제
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.24-34
    • /
    • 2003
  • In this paper, we investigated the problems of the offset time based service differentiation scheme for optical burst switching (OBS) networks, and proposed the preemption-based service differentiation scheme which combines a preemption channel selection algorithm and channel partitioning algorithm. The proposed preemption channel selection algorithm minimizes the length of preempted bursts to improve the channel efficiency, while the proposed channel partitioning algorithm controls the degree of service differentiation between service classes. The simulation results showed that the proposed schemes could improve the end-to-end performance and effectively provide controllable service differentiation in the multiple hop network environments.