Feedback-Assisted Multipolling Scheme for Real-Time Multimedia Traffics in Wireless LANs

무선 LAN에서 실시간 멀티미디어 트래픽을 위한 피드백 기반의 다중폴링 방법

  • 김선명 (아주대학교 정보통신공학과) ;
  • 조영종 (아주대학교 정보통신공학과)
  • Published : 2006.06.01

Abstract

In wireless local area networks (WLANs), the successful design of scheduling algorithm is a key factor in guaranteeing the various quality of service (QoS) requirements for the stringent real-time constraints of multimedia services. In this paper we propose a multipolling-based dynamic scheduling algorithm for providing delay guarantees to multimedia traffics such as MPEG streams. The dynamic algorithm exploits the characteristics of MPEG stream, and uses mini frames for feedback control in order to deliver dynamic parameters for channel requests from stations to the point coordinator (PC) operating at the access point (AP). In this scheme, the duration of channel time allocated to a station during a superframe is changed dynamically depending on the MPEG frame type, traffic load and delay bound of the frame, etc. Performance of the proposed scheme is investigated by simulation. Our results show that compared to conventional scheme, the proposed scheme is very effective and has high performance while guaranteeing the delay bound.

무선 LAN에서 스케줄링 알고리즘은 실시간 멀티미디어 서비스가 요구하는 엄격한 QoS(Quality of Service) 요구사항을 보장하는데 있어 가장 중요한 요소 중 하나이다. 본 논문에서는 MPEG 스트림과 같은 멀티미디어 트래픽의 지연을 보장하기 위한 다중폴링 기반의 동적 스케줄링 알고리즘을 제안한다. 제안된 알고리즘은 MPEG 스트림의 특성을 이용한다. 채널할당 요청 정보를 갖고 있는 동적 파라미터를 AP(Access Point)에서 동작하는 PC(Point Coordinator)로 전달하기 위해 미니 프레임이라는 피드백(Feedback) 제어 프레임을 이용한다. 하나의 수퍼프레임 동안에 각 단말에 할당될 채널시간은 MPEG 프레임 종류와 트래픽 양, MPEG 프레임의 지연한도(Delay bound) 등에 따라 동적으로 변한다. 시뮬레이션을 통하여 제안된 방법의 성능을 다른 방법과 비교 분석한다. 비교 분석결과, 제안된 방법이 지연한도를 보장하면서 높은 성능을 보임을 확인하였다.

Keywords

References

  1. IEEE, 'Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PRY) Specifications,' IEEE Standard 802.11, June 1999
  2. IEEE, 'Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium, Access control (MAC) Enhancements for Quality of Service (QoS),' IEEE Standard 802.11e, Draft 8.0, February 2004
  3. S. Lo, G. Lee, and W. Chen, 'An Efficient Multipolling Mechanism for IEEE 802.11 Wireless LANs,' IEEE Transactions on Computer, vol. 52, 110. 6, pp. 764-778, June 2003 https://doi.org/10.1109/TC.2003.1204832
  4. M. Fischer, 'QoS baseline proposal for the IEEE 802.11e,' IEEE Doc. 802.11-11/360, Nov. 2000
  5. B. Kim, S. Kim, and Y. Fang, 'Two-Step Multipolling MAC Protocol for Wireless LANs,' IEEE JSAC, vol. 23, no. 6, June 2005
  6. B. Kim, S. Kim, Y. Fang, and T. Wong, 'Link-Adaptable Polling-based MAC Protocol for Wireless LANs,' IEEE GWBECOM 2004, vol. 5, pp. 2997-3001, December 2004
  7. J. Chen and C. Lin, 'HMM: Hybrid Multipolling Mechanism with Pre-allocation Admission Control for Real-Time Transmissions in WLANs,' IEEE VTC2004-Fall, vol. 4, pp. 3040-3044, Sep. 2004
  8. Z. Chou and S. Wu, 'A New QoS Point Coordination Function for Multimedia Wireless LANs,' in Proceedings of 24th International Conference on Distributed Computing Systems, pp. 40-47, 2004
  9. A. Ziviani, B. E. Wolfmger, J. F. Rezende, O. C. M. B. Duarte, and S. Fdida, 'Joint Adoption of QoS Schemes for MPEG Streams,' Multimedia Tools and Applications, vol. 26, no. 1, pp. 59-80, May 2005 https://doi.org/10.1007/s11042-005-6849-4
  10. J. M. Boyce and R. D. Gaglianello, 'Packet Loss Effects on MPEG Video Sent over the Public Internet,' in Proc. of the ACM Multimedia 98, pp. 181-190, 1998
  11. M. Krunz, 'Bandwidth Allocation Strategies for Transporting Variable-hit-rate Video Traffic,' IEEE Communications Magazine, vol. 37, no. 1, pp. 40-66, 1999 https://doi.org/10.1109/35.739277
  12. M. Krunz and S. K. Tripathi, 'On the Characterization of VBR MPEG Streams,' in Proc. of the ACM SIGMETRlCS'97, vol. 25, no. 1, pp. 192-202, June 1997
  13. B. Kim, Y. Fang, T. Wong, and Y. Kwon, 'Throughput Enhancement through Dynamic Fragmentation in Wireless LANs,' IEEE Transactions on Vehicular Technology, vol. 54, no. 4, pp. 1415-1425, July 2005 https://doi.org/10.1109/TVT.2005.851361
  14. B. Kim, Y. Fang, T. Wong, and Y. Kwon, 'Dynamic Fragmentation Scheme for Rate-adaptive Wireless LANs,' IEEE PIMRC 2003, vol. 3, pp. 2591-2595, September 2003
  15. A. Matrawy, I. Lambadaris, and C. Huang, 'MPEG4 Traffic Modeling using The Transform Expand Sample Methodology,' in Proc. of 4th IEEE International Workshop on Networked Appliances, pp.249-256, January 2002
  16. IEEE, 'Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,' IEEE Standard 802.11a, 1999