• Title/Summary/Keyword: channel rendezvous

Search Result 14, Processing Time 0.021 seconds

TDMA based Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Ad Hoc Networks (무선 애드혹 네트워크에서 채널 효율성 향상을 위한 TDMA 기반의 멀티채널 MAC 프로토콜)

  • Kim, Jun-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.153-164
    • /
    • 2010
  • In this paper, we propose a multi-channel MAC protocol to improve the channel efficiency and network performance in wireless ad hoc networks. There are two main problems encountered in designing multi-channel MAC protocols. The first problem is the rendezvous problem and the second is multi-channel hidden node problem. In order to solve these problems, most of previous researches that have considered multi-channel MAC protocols use a common control channel to exchange control packets. However, they have a bottleneck problem at common control channel as increasing the number of data channels. The proposed MAC protocol solves the multi-channel hidden node problem using a TDMA scheme and increases the network throughput because transmitting and receiving data at the same time is possible. Also, since there is no common control channel, the network does not suffer from the common control channel saturation problem. Moreover, it achieves energy savings by allowing nodes that are not involved in communication to go into sleep mode. Simulation results show that the proposed MAC protocol improves the network throughput and channel efficiency and provides energy savings.

(Design of Group Key Management Protocol for Information Security in Multicast) (멀티캐스트 정보 보호를 위한 그룰 키 관리 프로토콜의 설계)

  • 홍종준
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1235-1244
    • /
    • 2002
  • This paper proposes a group key management protocol for a secure of all the multicast user in PIM-SM multicast group communication. With prosed architect, subgroups for multicast secure group management will be divided by RP (Rendezvous-Point) unit and each RP has a subgroup manager. Each subgroup manager gives a secure key to it's own transmitter md the transmitter compress the data with it's own secure key from the subgroup manager. Before the transmitter send the data to receiver, the transmitter prepare to encrypt a user's service by sending a encryption key to the receiver though the secure channel, after choking the user's validity through the secure channel. As the transmitter sending a data after then, the architecture is designed that the receiver will decode the received data with the transmitter's group key. As a result, the transmitting time is shortened because there is no need to data translation by group key on data sending and the data transmition is possible without new key distribution at path change to SPT (Shortest Path Tree) of the router characteristic. Additionally, the whole architecture size is samller than the other multicast secure architecture by using the conventional PIM-SIM routing structure without any additional equipment.

  • PDF

Initial Rendezvous Protocol using Multicarrier Operation for Cognitive Radio Ad-hoc Networks

  • Choi, Ik-Soo;Yoo, Sang-Jo;Seo, Myunghwan;Han, Chul-Hee;Roh, Bongsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2513-2533
    • /
    • 2018
  • In cognitive radio technology, the overall efficiency of communications systems can be improved without allocating additional bands by allowing a secondary system to utilize the licensed band when the primary system, which has the right to use the band, does not use it. In this paper, we propose a fast and reliable common channel initialization protocol without any exchange of initialization messages between the cluster head and the member nodes in cognitive ad-hoc networks. In the proposed method, the cluster and member nodes perform channel-based spectrum sensing. After sensing, the cluster head transmits a system activation signal through its available channels with a predetermined angle difference pattern. To detect the cluster head's transmission channels and to join the cluster, each member node implements fast Fourier transform (FFT) and computes autocorrelation for the angle difference sequence of the received signal patterns. This is compared to the predetermined reference angle difference pattern. The join-request and channel-decision procedures are presented in this paper. Performance evaluation of the proposed method is presented in the simulation results.

Fast and Reliable Dynamic Common Channel Setup and Reconstruction Method for the Point-to-Point Communications in Military CR Networks (군용 인지 무선 네트워크 환경에서 점대점 통신을 위한 신속하고 신뢰성 있는 동적 공통 채널 설정 및 복원 방법)

  • Kim, Min-Gyu;Choi, Jae-Kark;Yoo, Sang-Jo;Jang, Young-Up;Jeong, Kilsoo;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1112-1128
    • /
    • 2012
  • In cognitive radio networks, secondary users are allowed to utilize the channels currently not occupied by primary users opportunistically. Secondary users can communicate with each other using the commonly available channels (common channels) which may change dynamically based on the activity of the primary users. Even though many studies have dealt with cognitive radio behaviors, the detailed procedures for common channel configuration have not been paid much attention. In this paper, the fast and reliable dynamic common channel setup and reconstruction method for the point-to-point communications in military cognitive radio networks is proposed. The detailed time parameters are considered for common channel setup and reconstruction, such as the packet exchange time, channel request waiting time, and rendezvous time. Through numerical analyses, the delay and throughput performance of the proposed method is derived and evaluated.