• Title/Summary/Keyword: channel equalizer

Search Result 431, Processing Time 0.023 seconds

Performance Evaluation of VSDA Blind Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 VSDA 블라인드 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • This paper relates with the VSDA (Variable stepsize Square contour Decision directed Algorithm) adaptive equalization algorithm that is used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of 16-QAM signal.. In the conventional SCA, it is possible to compensates the amplitude and phase in the received signal that are mixed with the intersymbol interference by the constellatin dependent constant by using the 2nd order statistics of the transmitted signal. But in the VSDA, it is possible to the increasing the equalization performance by adding the concept of distance adjusted approach for constellation matching and the cost function of decision directed. We compare the performance of VSDA and SCA algorithm by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion and MSE were used in the performace index. As a result of computer simulation, the VSDA algorithm has better than the SCA in convergence speed, but it gives nearly same equalization performance in other index.

Time-domain Equalization Algorithm for a DMT-based xDSL Modem (DMT 방식의 xDSL 모뎀을 위한 시간영역 등화 알고리듬)

  • Kim, Jae-Gwon;Yang, Won-Yeong;Jeong, Man-Yeong;Jo, Yong-Su;Baek, Jong-Ho;Yu, Yeong-Hwan;Song, Hyeong-Gyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.167-177
    • /
    • 2000
  • In this paper, a new algorithm to design a time-domain equalizer (TEQ) for an xDSL system employing the discrete multitone (DMT) modulation is proposed. The proposed algorithm, derived by neglecting the terms whichdo not affect the performance of a DMT system in ARMA modeling, is shown to have similar performance tothe previous TEQ algorithms such as matrix inverse algorithm, fast algorithm, iterative algorithm, and inversepower method, even with the significantly lower computational complexity. In addition, since the proposedalgorithm requires only the received signal, the information on the channel impulse response or training sequenceis not needed. It is also shown that for the case where bridged tap is not included, the number of TEQ tapsrequired can be reduced to half(from 16 to 8) without affecting the overall performance. The performances of theproposed and previous TEQ algorithms are compared by applying them to ADSL environment.

  • PDF

Algorithm for the Improvement of Time and Frequency Synchronization Performance in OFDMA System (OFDMA 시스템의 시간 및 주파수 동기 성능 향상을 위한 동기화 알고리즘)

  • Noh Jung-Ho;Sun Tae-Hyoung;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.402-411
    • /
    • 2006
  • In OFDMA system, multiple users transmit signal through the subcarriers assigned to the user. Capabilities of high data-rate transmission in OFDMA system come from the ability to compensate the ICI (Inter Carrier Interference) using a single-tap equalizer and to implement transmitter and receiver by employing high speed FFT circuitry. Issues of time and frequency synchronization in OFDM system is quite essential to preserve the orthogonality among subcarriers not to produce ICI. In this paper, we Int analyze the preamble used in 802.16 d/e and WiBro system. Then we propose an effective timing synchronization algorithm, which is more accurate than the conventional one in the sense of timing position, and integral frequency offset estimation scheme for the simultaneouse estimation of the fractional and integral frequency offset. Through the simulation utilizing the proposed synchronization algorithm and structure, we show that the performance degradation due to the adjacent channel interference can be mitigated for the than conventional ones.

Performance of VSCA Adaptive Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 VSCA 적응 등화 알고리즘의 성능)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.67-73
    • /
    • 2013
  • This paper relates with the performance of VSCA adaptive equalization algorithm that is used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of 16-QAM signal. In the conventional SCA, it is possible to compensates the amplitude and phase in the received signal that are mixed with the intersymbol interference by the constellatin dependent constant by using the 2nd order statistics of the transmitted signal. But in the VSCA, it is possible to the increase the equalization performance by adding the concept of distance adjusted approach for constellation matching. We compare the performance of VSCA and SCA algorithm by computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion and MSE were used for perfomance comparison. It was confirmed that, the VSCA algorithm has better than the SCA in every performance index by computer simulation.

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.

Convergence Property Analysis of Multiple Modulus Self-Recovering Equalization According to Error Dynamics Boosting (다중 모듈러스 자기복원 등화의 오차 역동성 증강에 따른 수렴 특성 분석)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The existing multiple modulus-based self-recovering equalization type has not been applied to initial equalization. Instead, it was used for steady-state performance improvement. In this paper, for the self-recovering equalization type that considers the multiple modulus as a desired response, the initial convergence performance was improved by extending the dynamics of the errors using error boosting and their characteristics were analyzed. Error boosting in the proposed method was carried out in proportion to a symbol decision for the equalizer output. Furthermore, having the initial convergence capability by extending the dynamics of errors, it showed excellent performance in the initial convergence rate and steady-state error level. In particular, the proposed method can be applied to the entire process of equalization through a single algorithm; the existing methods of switching over or the selection of other operation modes, such as concurrent operating with other algorithms, are not necessary. The usefulness of the proposed method was verified by simulations performed under the channel conditions with multipath propagation and additional noise, and for performance analysis of self-recovering equalization for high-order signal constellations.

A New Decision-Directed Equalization with Improved Blind Convergence Properties by Error Scaling (오차 스케일링에 의해 블라인드 수렴 특성을 개선한 새로운 판정의거 등화)

  • Oh, Kil Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.419-424
    • /
    • 2015
  • The Decision-directed (DD) algorithm is known to be not effective to initialize a blind equalizer in the channel conditions when the eye diagram of received signals is completely closed because it can not open the eye diagram enough. In this paper, we propose a new error to replace the error of the conventional DD algorithm. The new DD error is the conventional DD error scaled by the modulus of symbol decision, new DD algorithm using this error is effective to open the closed eye diagram in early stage of equalization unlike the conventional DD. The new DD algorithm appling the new error is showed excellent convergence characteristics as compared to the CMA widely used in blind initialization, particularly, is useful for equalization of signals having multimodulus. The performance of the new DD algorithm is verified through the simulation for the higher-order QAM signals.

Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment (다중송신채널 환경에서 수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Oh, Sehyun;Kim, J.S.;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Underwater communication is difficult to increase the communication capacity because the carrier frequency is lower than that of radio communications on land. This is limited to the bandwidth of the signal under the influence of the characteristics of an ocean medium. As the high transmission speed and large transmission capacity have become necessary in the limited frequency range, the studies on MIMO (Multiple Input Multiple Output) communication have been actively carried out. The performance of the MIMO communication is lower than that of the SIMO (Single Input Multiple Output) communication because cross-talk occurs due to multiusers along with inter symbol interference resulting from the channel characteristics such as delay spread and doppler spread. Although the adaptive equalizer considering multi-channels is used to mitigate the influence of the cross-talk, the algorithm is normally complicated. In this paper, time reversal mirror technique with the characteristic of a self-equalization will be applied to simplify the compensation algorithm and relieve the cross-talk in order to improve the communication performance when the signal transmitted from two channels is received over interference on one channel in the same time. In addition, the performance of the MIMO communication based on the time reversal mirror is verified using data from the SAVEX15(Shallow-water Acoustic Variability Experiment 2015) conducted at the northern area of East China Sea in May 2015.

Performance Analysis and Compensation of FH/SC-FDMA System for the High-Speed Communication in Jamming Channel (재밍 채널에서 고속 통신을 위한 주파수 도약 SC-FDMA 통신 시스템의 성능 분석과 보상)

  • Kim, Jang-Su;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.551-561
    • /
    • 2009
  • FH system is very robust to the jamming interference. OFDM system is very good for the high speed communication system. But, it has high PAPR. SC-FDMA system based on OFT-spread OFDM was proposed to reduce high PAPR. Therefore, in this paper, we like to introduce the FH system into SC-FDMA system, which can be best solution to the jamming hostile environment and for the high power efficiency. Also, OFDM is very sensitive to ICI. Especially, ICI generated by frequency offset and phase noise breaks the orthogonality among sub-carriers, which seriously degrades the system performance. We analyze the performance of the FH SC-FDMA system in the PBJ and MTJ channel. In this paper, the ICI effects caused by phase noise, frequency offset and Doppler effects are analyzed and we like to propose the PNFS algorithm in the equalizer to compensate the ICI influences. Through the computer simulations, we can confirm the performance improvement.

Design of Physical Layer and Performance Analysis for MX-S2X, Ship Centric Direct Communication with the Mitigation of Multi-path Fading on Sea Environment (해상 다중경로 페이딩 극복을 위한 선박중심 직접통신(MX-S2X) 물리계층 설계 및 성능 분석)

  • Ryu, Hyung-Jick;Yoo, Hae-Sun;Kim, Won-Yong;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.352-359
    • /
    • 2021
  • This paper presents the definition and importance of ship-centric direct communication concerning ship safety of maritime autonomous and unmanned ships. It also proposes the concept of MX-S2X communication based on high frequency for wide-bandwidth technology and describes the design and simulation result for the physical layer of MX-S2X. It considered high-speed communication as well as overcoming maritime multi-path fading required to be resolved in the marine environment. The physical layer of MX-S2X communication was designed to overcome the occurrence of error-floor caused by multi-path fading even with receiving sufficient signal strength. To this purpose, a performance analysis was conducted on the physical layer by applying the channel model of the actual maritime communication environment. As a result of the performance analysis of the MX-S2X physical layer, it was confirmed that the BER error-floor observed in the VDE physical layer test was overcome, and it operated within the SNR 2dB degradation range compared to the AWGN channel. It is expected that this will show enough performance suitable for short-distance ship-centered direct communication and can be used for direct communication of maritime autonomous ships, unmanned ships, and group navigation of themshortly.