• 제목/요약/키워드: channel characteristics

검색결과 3,696건 처리시간 0.035초

Effects of Group Delay and Non-linear Characteristics in Ka-Band High Data Rate Satellite Communication System (Ka 대역 초고속 위성통신 시스템에 대한 군지연 및 비선형 특성의 영향)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제12권4호
    • /
    • pp.600-610
    • /
    • 2001
  • The effects of group delay and non-linear characteristics on high data rate(HDR) satellite channel are presented in this paper Based on the modeling of group delay and non-linear characteristics the system performances which provide various data rate services were analyzed in Ka-band satellite channel. As the transmission data rate is increased, the degradation due to these channel characteristics is severely increased. The linear component of group delay and the AM-AM component of non-linear characteristics severely affect the system performance. To efficiently provide the various service via the same transmission system it is necessary to equalize the primary impairment factors. The optimum operating points of HDR satellite transmission system are implemented by considering the analyzed results on channel characteristics.

  • PDF

Research on Relationship of Bed Material and Channel Characteristics (대표 입경과 하도 특성의 관계 분석)

  • Lee, Du-Han;Son, Min-Woo;Kim, Myoung-Hwan;Kim, Chang-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.613-617
    • /
    • 2006
  • Bed material in natural streams is affected by geological characteristics of upstream and acting focre by flow of stream. Acting force in streams are also affected by bed slope and discharge of streams. Yamamoto(1994) suggested that channel reaches with similar slope share similar characteristics values in representative bed material size, tractive force, channel width and depth. He also suggested that main factors dominating channel characteristics are mean annual discharge, epresentative bed material size and bed slope. Bed material shows physical and ecological characteristics of channels. In this research, characteristics of bed material in natural or close to natural streams were studied and compared with Janpanese stream data. In the result, characteristics of gravel and sand material can be presented in the term of non-dimensional tractive force, bed slope and bed material size.

  • PDF

Correlation Analysis of Watershed Characteristics and the Critical Duration of Design Rainfall (설계강우의 임계지속기간과 유역특성인자의 상관성 분석)

  • Lee, Jung-Sik;Sin, Chang-Dong;Lee, Bong-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this study is to analyze the relationship between the watershed characteristics and the critical duration of design rainfall. For estimation of critical duration, adjustment Huff's method and ILLUDAS urban runoff model were applied to urban 21 areas. Watershed characteristics such as area, channel length, channel slope, shape factor, and pipe density were used to simulate correlation analysis. The conclusions of this study are as follows; it is revealed that critical duration is influenced by the watershed characteristics such as pipe density, area and channel length. Also, multiple regression analysis using watershed characteristics is carried out and the determination coefficient of multiple regression equation shows 0.972.

  • PDF

Experimental Study of Changes in Channel Characteristics at Stream Confluences (하천합류점의 하도특성치 변화에 관한 실험적 연구)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • 제32권4호
    • /
    • pp.421-434
    • /
    • 1997
  • Flume experiments are conducted to describe channel adjustments at stream confluences and to examine some factors to which changes in channel characteristics are subject. There are different factors controlling channel size and shape; shereas the fomer is primarily controlled by water discharge alone, the latter including channel slope is influenced by sediment load as well as water discharge. The morphometric adjustments of confluent tributaries can be consequently classified into three types based upon changes in sediment concentration which are associated with the relative increasing rates of water discharge and sediment load at these sites. Flow is accelerated at stream confluences due to the convergence of confluent flows, causing an sharp increase in velocity. It restrains an increase in channel capacity, and furthers a decrease in channel slope, of a receiving stream. As a result, effects of slight increases in sediment concentration hardly appear on changes in channel characterisitics at stream confluences.

  • PDF

Statistical Characteristic Analysis of the Spatial Channel Model for Performance Evaluation of MIMO Systems (MIMO 송수신 시스템 성능 평가를 위한 공간 채널 모델의 통계적 특성 분석)

  • Shin, Junsik;Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제26권8호
    • /
    • pp.748-757
    • /
    • 2015
  • MIMO systems utilizing multiple antenna transmission and reception is one of the key technologies to enhance the capacity of 5G wireless communications. In order to obtain an appropriate performance evaluation of MIMO techniques, the usage of wireless channel model reflecting spatial channel characteristics is required, such as the 3-dimensional spatial channel model(3D SCM) proposed by 3GPP TR36.873 documentation. In this paper, we implement and verify the channel simulation environment based on 3D SCM, to present and compare the characteristics of UMi and UMa environments. We also apply MIMO transmission to the UMa scenario to investigate the channel correlation among antenna elements with different array distances and to identify the corresponding throughput changes. By evaluating the channel power correlations for randomly distributed users within the sector for different horizontal and vertical antenna distances, we present the statistical characteristics which determine the transmission performance under the SCM environment.

Device Design of Vertical Nanowire MOSFET to Reduce Short Channel Effect (단채널 현상을 줄이기 위한 수직형 나노와이어 MOSFET 소자설계)

  • Kim, Hui-jin;Choi, Eun-ji;Shin, Kang-hyun;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.879-882
    • /
    • 2015
  • In this work, we have analyzed the characteristics of vertical nanowire GAA MOSFET according to channel width and the type of channel doping through the simulation. First, we compared and analyzed the characteristics of designed structures which have tilted shapes that ends of drains are fixed as 20nm and ends of sources are 30nm, 50nm, 80nm and 110nm. Second, we designed the rectangular structure which has uniform width of drain, channel and source as 50nm. We used it as a standard and designed trapezoidal structure which is tilted so that the end of drain became 20nm and reverse trapezoidal structure which is tilted so that the end of source became 20nm. We compared and analyzed the characteristic of above three structures. For the last, we used the rectangular structure, divided its channel as five parts and changed the type of the five parts of doping concentration variously. In the first simulation, when the channel width is the shortest, in the second, when the structure is trapezoid, in the third, when the center of channel is high doped show the best characteristics.

  • PDF

The Change of Flow depending upon the Discharge and Approaching Angle at Channel Junctions (합류부의 유량 및 접근각도에 따른 흐름변화)

  • Choi, Gye-Woon;Park, Young-Suop;Han, Man-Shin
    • Journal of Korea Water Resources Association
    • /
    • 제37권8호
    • /
    • pp.623-630
    • /
    • 2004
  • In this paper, the hydraulic model tests are conducted for the hydraulic characteristics at channel junctions. The experiments are examined through the variation of approaching angle, discharge in the upstream main channel and the discharge ratio between the main channel and the tributary. The experiments are conducted in the channel model having the length of 450cm, the widths of 40cm and 32cm. Four water tanks and pumps are installed in the experimental channel. The length of stagnation zone is increased by Increasing of approaching angle and the discharge in the upstream channel. The length of stagnation increase with the discharge ratio between the main channel and the tributary. However, the variation of the stagnation zone near the channel junctions is little at the same approaching angles and the discharge ratioes between the main channel and tributary. However, the variation of the stagnation zone near the channel junctions is little at the same approaching angles and the discharge ratioes between the main channel and tributary. Accelerating zone of the velocity is occurred in the middle of the channel in the small approaching angle. However, the influence zone of the accelerating velocity is increased by increasing the approaching angle.

Derivation of Channel and Floodplain Width Regression Reflecting Korean Channel Shapes in SWAT Model (국내 하천 형상을 반영한 SWAT 모형 내 하천폭 및 홍수터폭 산정 회귀식 도출)

  • Lee, Hyeon-Gu;Han, Jeongho;Lee, Dongjun;Lim, Kyoung-Jae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제61권4호
    • /
    • pp.33-42
    • /
    • 2019
  • In this study, the channel and floodplain widths are indirectly measured for three different watersheds using satellite images to reflect the shape of Korean channels in the Soil and Water Assessment Tool (SWAT) model. For measuring the channel and floodplain widths, multiple satellite images were referred to ensure the widest width of certain points. In the single channel, the widths at the multiple points were measured. Based on the measured data, the regression equations were derived to estimate the channel and floodplain widths according to watershed areas. Applying these developed equations, this study evaluated the effect of the change of channel and floodplain widths on the SWAT simulation by comparing to the measured streamflow data. The developed equations estimated larger channel width and smaller floodplain compared with those calculated in the current SWAT model. As shown in the results, there was no considerable changes in the predicted streamflow using the current and developed equations. However, the flow velocity and channel depth calculated from the developed equations were smaller than those of the current equations. The differences were caused by the effect of different channel geometries used for calculating the hydraulic characteristics. The channel geometries also affected the water quality simulation in channels because the hydraulic characteristics calculated by the channel geometries are directly related to the water quality simulation. Therefore, application of the river cross-sectional regression equation reflecting the domestic stream shape is necessary for accurate water quantity / quality and water ecosystem simulation using hydrological model.

Heat Transfer and Pressure Drop Characteristics in Zigzag Channel Angles of Printed Circuit Heat Exchangers (지그재그채널 PCHE의 각도에 따른 열전달 및 압력강하특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1147-1152
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle $180^{\circ}$, $160^{\circ}$, $140^{\circ}$, $120^{\circ}$ and $100^{\circ}$. The zigzag PCHE was numerically investigated for Reynolds number in a range of $150{\sim}800$. The temperatures of the hot side were performed at $80^{\circ}C$ while that of the cold side was conducted at $20^{\circ}C$. The results show that the performance of heat transfer rate for zigzag channel $100^{\circ}$ increases about 11.5% compared to that of zigzag channel $180^{\circ}$. On the other hand, the performance of pressure drop for zigzag channel $100^{\circ}$ is remarkably higher than that of zigzag channel $180^{\circ}$, about 1.4 times.

  • PDF

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF