• Title/Summary/Keyword: changing pressure

Search Result 968, Processing Time 0.028 seconds

A Numerical Study on the Flow Characteristics in the Catalytic Muffler with Different Inlet and Outlet Configurations (입구 및 출구 형상 변화에 따른 촉매 삽입형 머플러 내부의 유동 해석)

  • An, Tae Hyun;Lee, Seung Yeop;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Lack of the space in many diesel vehicles make it difficult to design and install the catalytic muffler to reduce emissions. For this reason, inlet part of the catalytic muffler is made of L-type which has lower flow uniformity than conventional I-type, and catalytic muffler has complex internal structure by various insertions, which affect the flow uniformity and pressure drop of the systems. In this work, the flow characteristics such as flow uniformity and pressure drop have been numerically investigated by changing such various geometries as inlet shape, porosity, and outlet shape inside the muffler with the three-dimensional turbulent incompressible flow solver. Total 4 different cases are considered in order to find optimal configurations of the catalytic muffler in view of high flow uniformity and low pressure drop. The results show that Case 2 which has no induction cone and outlet perforated pipe has higher uniformity index and lower pressure drop than others considered in this work.

Underwater Stability of Surface Chemically Modified Superhydrophobic W18O49 Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.601-601
    • /
    • 2013
  • Superhydrophobic W18O49 nanowire (NW) arrays were synthesizedusing a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting W18O49 NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic W18O49 NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of W18O49 NWs arrays was conducted by changing hydrostatic pressure and surface energy of W18O49 NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of W18O49 NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II) (부실식 정적연소실내 층상혼합기의 연소특성(II))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

Variation of GMR Properties with Ar Pressure and Co Interlayer Thickness in Ta/NiFe/Co/Cu/Co/NiFe/FeMn Spin Valve Structures (Ta/NiFe/Co/Cu/Co/NiFe/FeMn 스핀밸브구조에서 Ar 압력과 Co 사이층 두께에 따른 GMR 특성 변화)

  • 최연봉;류상현;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • We have studied changes of coercivity $(H_c)$, exchange anisotropy field $(H_{ex})$ and MR ration in glass/Ta/NiFeI/CoI(t)/Cu/CoII(3/4 t)/NiFeII/FeMn spin valve structures by changing Ar pressure and thicknesses of Co layers using DC, RF sputtering methods. We obtained minimum coercivity of 2.8 Oe at 4 mTorr of Ar pressure, exchange anisotropy field of 50.0 Oe at 6 mTorr and 5.3 % of MR ratio at 10 mTorr. Also, we obtained 3.0 Oe of coercivity at 40 $\AA$ of CoI layer, 65.9 Oe at 13 $\AA$ and 4.7 % of MR ratio at 27 $\AA$ and 34 $\AA$ by changing the thicknesses of Co layers.

  • PDF

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.

Highly Tunable Block Copolymer Self-assembly for Nanopatterning

  • Jeong, Yeon-Sik;Jeong, Jae-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.1-6.1
    • /
    • 2011
  • Nanoscale block copolymer (BCP) patterns have been pursued for applications in sub-30 nm nanolithography. BCP self-assembly processing is scalable and low cost, and is well-suited for integration with existing semiconductor fabrication techniques. However, one of the major technical challenges for BCP self-assembly is limited tunability in pattern geometry, dimension, and functionality. We suggest methods for extending the degree of tunability by choosing highly incompatible polymer blocks and utilizing solvent vapor treatment techniques. Siloxane BCPs have been developed as self-assembling resists due to many advantages such as high etch-selectivity, good etch-resistance, long-range ordering, and reduced line-edge roughness. The large incompatibility leads to extensive degree of pattern tunability since the effective volume fraction can be easily manipulated by solvent-based treatment techniques. Thus, control of the microdomain size, periodicity, and morphology is possible by changing the vapor pressure and the mixing ratio of selective solvents. This allows a range of different pattern geometry such as dots, lines and holes and critical dimension simply by changing the processing conditions of a given block copolymer without changing a polymer chain length. We demonstrate highly extensive tunability (critical dimension ~6~30 nm) of self-assembled patterns prepared by a siloxane BCP with extreme incompatibility.

  • PDF

Machining Characteristics According to the Thickness Change When Wire-cut Electrical Discharge Machining of Tungsten Carbide (초경합금재 와이어컷 방전가공시 두께변화에 따른 가공 특성)

  • 이재명;김원일;이윤경;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.820-823
    • /
    • 2000
  • The characteristics of wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of tungsten carbide in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension, the gap of deflection was decreased after thickness 60mm and discharge time of 6$\mu\textrm{s}$ due to the changing from fundamental mode to vibration mode. The deflection is the smallest at the water specific resistivity of 7.5 kΩ ㆍcm. The deflection is found to be decreased as increasing dwell time, and the result is due to the vibration of the pressure and the amount of the dielectric. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, was observed for rough wire-cutting EDM of STD-11. This phenomena is found to be decreased as the number of EDM is increased. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD (CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구)

  • MO, Jang-Oh;NAM, Koo-Man;KIM, You-taek;LEE, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

A Study on the Stability Improvement of Rotor System Supported by Hydrodynamic Bearing (동수압 저어널 베어링으로 지지된 회전축계의 안정성 향상에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 1995
  • The anisotropic pressure distribution of the hydrodynamic bearing may generate the unstable vibration phenomenon over a certain speed. These vibrations, known as whirl, whip or rotor instability, cannot be sustained over a wide range of rotational spees. Besides these vibrations not only perturb the normal operation of a rotating machine, but may also cause serious damage to the machinery system. And, it is really impossible to change one parameter without changing others, or difficult to fabricate the modified non-circular type bearing, with all the other cures used just now, In this study, hybrid bearing with magnetic exciter is designed for stability improvement of hydrodynamic bearing rotor system without changing mechanical parameters. For stability study, eigenvalue study of the bearing-rotor system is executed by finite element method and results of analyses and experiments show the possibilities of the stability improvement of the hydrodynamic bearing system by using the electricmagnetic force.

A Numerical Analysis on Flow Characteristics of Vertical Multi-stage Centrifugal Pump (입형 다단 원심펌프 유동특성에 관한 수치해석)

  • Mo J. O.;Kang S. J.;Song K. T.;Kim S. D.;Lee Y. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.589-592
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller of centrifugal pump with 6 blades and guide vain with 11 blades. The numerical analysis of vertical multi-stage centrifugal pump is performed by changing flow rate from $8\;to\;26\;m^{3}/h$ at the constant 3500rpm. The characteristics such as total pressure coefficient, total head, water horse power, power efficiency are represented according to flow rate changing. In the future, we will need to perform flow calculation of vertical multi-stage centrifugal pump by considering meridional shape of impeller.

  • PDF