• Title/Summary/Keyword: change of seasonal trend

Search Result 90, Processing Time 0.029 seconds

The Forecast of the Cargo Transportation and Traffic Volume on Container in Gwangyang Port, using Time Series Models (시계열 모형을 이용한 광양항의 컨테이너 물동량 및 교통량 예측)

  • Kim, Jung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2008
  • The future cargo transportation and traffic volume on container in Gwangyang port was forecasted by using univariate time series models in this research. And the container ship traffic was produced. The constructed models all were most adapted to Winters' additive models with a trend and seasonal change. The cargo transportation on container in Gwangyang port was estimated each about 2,756 thousand TEU and 4,470 thousand TEU in 2011 and 2015 by increasing each 7.4%, 16.2% compared with 2007. The volume per ship on container was estimated each about 675TEU and 801TEU in 2011 and 2015 by increasing each 30.3%, 54.6% compared with 2007. Also, traffic volume on container incoming in Gwangyang Port was prospected each about 4,078ships and 5,921ships in 2011 and 2015.

Proposal of Agricultural Drought Re-evaluation Method using Long-term Groundwater Level Monitoring Data (장기 지하수위 관측자료를 활용한 농업가뭄 재평가 방안 제언)

  • Jeong, ChanDuck;Lee, ByungSun;Lee, GyuSang;Kim, JunKyum
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.27-43
    • /
    • 2021
  • Since climate factors, such as precipitation, temperature, etc., show repeated patterns every year, it can be said that future changes can be predicted by analyzing past climate data. As with groundwater, seasonal variations predominate. Therefore, when a drought occurs, the groundwater level is also lowered. Thus, a change in the groundwater level can represent a drought. Like precipitation, groundwater level changes also have a high correlation with drought, so many researchers use Standard Groundwater Level Index (SGI) to which the Standard Precipitation Index (SPI) method is applied to evaluate the severity of droughts and predict drought trends. However, due to the strong interferences caused by the recent increase in groundwater use, it is difficult to represent the droughts of regions or entire watersheds by only using groundwater level change data using the SPI or SGI methods, which analyze data from one representative observation station. Therefore, if the long-term groundwater level changes of all the provinces of a watershed are analyzed, the overall trend can be shown even if there is use interference. Thus, future groundwater level changes and droughts can be more accurately predicted. Therefore, in this study, it was confirmed that the groundwater level changes in the last 5 years compared with the monthly average groundwater level changes of the monitoring wells installed before 2015 appeared similar to the drought occurrence pattern. As a result of analyzing the correlation with the water storage yields of 3,423 agricultural reservoirs that do not immediately open their sluice gates in the cases of droughts or floods, it was confirmed that the correlation was higher than 56% in the natural state. Therefore, it was concluded that it is possible to re-evaluate agricultural droughts through long-term groundwater level change analyses.

Seasonal Variation of Surface Sediment Distribution and Transport Pattern Offshore Haeundae Beach Area (해운대 연안 표층퇴적물 분포의 계절변화와 이동)

  • Kim, Seok-Yun;Jeong, Joo-Bong;Lee, Byoung-Kwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • To study the seasonal pattern of sediment distribution and the transport tendency in Haeundae nearshore area; i) the grain size texture of surface sediment was examined in June, October, and December of 2007, and March and June of 2008, and secondary, ii) the transport tendency was studied by using a two-dimensional sediment transport model of Gao and Collins (1992), and finally, iii) the bathymetric changes were analyzed by using the data collected in February, May, August, and December of 2007 by Haeundae District Office. Spatial distribution of sediment texture, the tendency of sediment transport as well as the bathymetric change showed significant seasonal variations. From June to December of 2007, the eastern part of the Haeundae area, off Dalmaji Hill showed the coarsening of mean grain size with a prominent transport tendency toward the Haeundae beach. On the contrary, the western part of the area, off Dongbaek Island showed a fining trend of mean grain size, and the transport tendency toward the beach was relatively weakened. From December of 2007 to June of 2008, the mean grain size of Mipo Harbor became finer, and the transport tendency toward the central beach decreased. The mean grain size of Dongbaek Island became coarser, while the tendency increased in the direction of the beach. The areas of significant net accumulation and erosion were depicted based on the bathymetric changes between observation periods. During the period of February to May of 2007, net accumulation was observed on the eastern part of the study area, in front of Mipo Harbor. Erosion was generally occurred throughout the area from May to August of 2007. From August to December of 2007, erosion and accumulation was observed off Mipo Harbor and Dongbaek Island, respectively. The change of sediment facies also suggests the accumulation on the eastern coast during the spring, erosion around the entire coast during the summer, and accumulation on the western coast during the winter. The changes in the accumulation and erosion were most apparent during the summer when several typhoons have passed by, while unnoticeable during the spring.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Change in Fish Species Composition in the Saemangeum Reservoir after the Construction of Dike in 2006-2007 (새만금 방조제 물막이 완공 후인 2006-2007년 새만금호 어류 종조성의 변화)

  • Lee, Tae-Won;Hwang, Hak-Bin;Hwang, Sun-Wan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.191-199
    • /
    • 2007
  • Seasonal variation in species composition of fish in the Saemangeum Reservoir was determined using seasonal samples collected by an otter trawl from April 2006 to February 2007 after the dike construction, and compared with the data obtained during the dike construction in 2001-2002. A total of 35 species, 8,960 individuals and 53,084.4 g of fish were collected during the study. Of the fish collected, brackish and coastal fishes such as Konosirus punctatus, Synechogobius hasta and Repomucenus lunatus, and migrant fishes such as Engraulis japonicus and Scomberomorus niphonius predominated in abundance accounting for 95% in the total number of individuals. Fish species composition and abundance showed a similar seasonal trend to those in the other western coastal waters of Korea. The resident species were mainly collected in spring and in autumn. The number of species and biomass were high in summer by the large amount of catch of migrating species. Catch was low in winter and only 2 species were collected. A brackish and coastal fish, K. punctatus and two migrant fishes, E. japonicus and S. niphonius were abundantly collected after the dike construction. However, the dominant fishes during the dike construction such as Leiognathus nuchalis, Neosalanx jordani and Chaeturichthys stigmatias were rarely collected. Fish density was $1,149\;inds./10,000m^2\;and\;12,644g/10,000m^2$ during the dike construction, and increased 6 times in the number of individuals ($7,467\;inds./10,000m^2$) and 3 times in biomass ($44,237g/10,000m^2$) after the dike construction. Annual species richness (R) and species diversity (H') decreased from R=0.0160 and H'=2.47 during the dike construction in 2001-2002 to R=0.0038 and H'=1.11 after dike construction in 2006-2006, respectively. These changes seemed to be related to the reduction of the saline area and degradation of water quality in Semangeum Reservoir after the dike construction.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.

Change of Regional Atmospheric Circulation Related with Recent Warming in the Antarctic Peninsula (남극반도의 최근 온난화와 관련된 지역적 대기순환의 변화)

  • Lee, Jeong-Soon;Kwon, Tae-Yong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Jeong-Woo
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.503-518
    • /
    • 2003
  • This study examines the relationship among temperature, wind, and sea level pressure to understand recent warming in the vicinity of the Antarctic Peninsula. To do this, the surface air temperature, NCEP/NCAR reanalysis wind data and sea level pressure data for the period of 40 years are analyzed. The 40-year surface air temperature data in the Antarctic Peninsula reveals relatively the larger warming trends for autumn and winter than other seasons. The variability of the surface air temperature in this region is compared with that of the regional atmospheric circulation. The surface air temperature is positively correlated with frequency of northwesterlies and negatively correlated with frequency of southeasterlies. This relation is more evident in the northern tip of the Antarctic Peninsula for autumn and winter. The trend analysis of wind frequency in the study area shows increasing and decreasing trends in the frequency of northwesterlies and southeasterlies, respectively, in the northwestern part of the Weddell Sea for autumn and winter. And also it is found that these winds are closely related with decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula. Furthermore from the seasonal variation of sea level pressure in this area, it may be presumed that decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula is related with warming in the vicinity of the Antarctic Peninsula for autumn and winter. Therefore it can be explained that recent warming in the vicinity of the Antarctic Peninsula is caused by positive feedback mechanism, that is, the process that warming in the vicinity of the Antarctic Peninsula can lead to the decrease of sea level pressure in the southeastern region of the Antarctic Peninsula and these pressure decrease in turn lead to the variation of wind direction in northwestern part of Weddell Sea, again the variation of wind direction enhances the warming in the Antarctic Peninsula.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.