• Title/Summary/Keyword: change of physical properties

Search Result 1,078, Processing Time 0.037 seconds

Polarimetry of solar system small bodies using the Seoul National University 61cm telescope and TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kwon, Yuna Grace;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • It is known that lights scattered by comets and asteroids are partially polarized. From polarimetric observations of those objects, we can investigate physical properties, such as albedos, sizes of cometary dust particles and regolith of asteroids. Since the polarization degrees of those objects highly depend on their phase angles (Sun-object-observer's angles), long-term monitoring observations are required. Moreover, comets show unforeseeable activations (i.e., outbursts) which need follow-up observations to understand the mechanism. In order to realize such monitoring and transient observations, we installed the Triple-Range Imager and POLarimeter (TRIPOL) on the 61cm telescope of Seoul National University (Hereafter, SNU) Gwanak campus. With this combination, we can obtain g', r', i' bands photopolarimetric images simultaneously with $8.0^{\prime}{\times}8.0^{\prime}$ field of view and pixel resolution of 0.94" pixel-1. Here, we make a presentation regarding the photometric and polarimetric performances of TRIPOL on the SNU 61cm telescope. In addition, we introduce initial polarimetric results of asteroid and comets with the instruments. First, we determine the limiting magnitudes (defined as magnitudes for S/N=5) of $15.17{\pm}0.06$ (g'-band), $15.68{\pm}0.01$ (r'-band), $16.24{\pm}0.03$ (I'-band), respectively, with total 240-seconds exposure (four 60-seconds exposure images, each was taken at different rotation angle for the half-wave plate). Second, we found that the instrumental polarization is negligibly small, ($-0.32{\pm}0.04%$ in the g', $-0.36{\pm}0.05%$ in the r' and $-0.21{\pm}0.04%$ in the i'-bands), while the polarization efficiencies are large enough to maximize the performance (i.e., $97.52{\pm}0.03%$ in the g', $98.83{\pm}0.02%$ in the r' and $99.15{\pm}0.02%$ in the i'-bands). With the instruments, we made observations of three Jupiter-family comets, 21P/Giacobini-Zinner, 38P/Stephan-Oterma, and 46P/Wirtanen and plan to observe one near-Earth asteroid, (433) Eros, on a trial basis. Especially for comets, we discriminate signals from dust and gas to eliminate gas contamination, which are known to change observed degree of linear polarization, using multi-band images. We confirm that the phase angle dependency of these comets are consistent with previous observations, probably because polarimetric property of Jupiter-family comets are broadly homogeneous unlike asteroids. We will also describe future observation plans using TRIPOL and SNU 61cm telescope.

  • PDF

Physicochemical Changes of Vinegars Obtained from Bamboo and Wood during Long Term Aging (장기간 숙성에 따른 죽초 및 목초액의 이화학적 변화)

  • Ku, Chang-Sub;Mun, Sung-Phil;Park, Sang-Bum;Kwon, Su-Duk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.74-79
    • /
    • 2002
  • Three different kinds of the crude vinegars obtained from oak(Quercus serrata), bamboo(Phyllostachys pubescens) and pine(Pinus densiflora) species were stored for approximately one year and periodically analyzed to monitor their physicochemical changes. Small changes in physical properties, such as the pH, specific gravity and amount of organic acids as well as water-soluble tar were observed in the entire course of aging period. However, the color difference of the vinegars showed a remarkable change between 7 and 10 months. In addition, these vinegars' colors changed from light yellowish orange to much deeper purple and orange during this period. The amount of organic acids and neutral compounds(dihydro-2(3H)-furanone, furfural, furfuryl alcohol, 2-hydroxy-1-methyl-1-cyclopenten-3-one, 1-hydroxy-2-propanone and methanol) in the vinegars increased or decreased periodically every three months. A good linear relationship (correlation coefficient of ca. 0.92) was obtained between the amount of organic acids and the amount of neutral compounds in such changes. However, although the amount of phenols increased or decreased periodically, its amount was decreased over the entire aging.

Recent Trends in The Production of Polyhydroxyalkanoates Using Marine Microorganisms (해양 미생물에 의한 폴리하이드록시알카노에이트 생산의 최근 동향)

  • Seon Min Kim;Hye In Lee;Hae Su Jeong;Young Jae Jeon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.680-691
    • /
    • 2023
  • Peak oil, climate change, and microplastics caused by the production and usage of petroleum-based plastics have threatened the sustainability of our daily life, and this has emerged as a recent global issue. To solve this global issue, the production and usage of biodegradable eco-friendly bioplastics such as polyhydroxyalkanoates (PHAs) has been suggested as an alternative. Therefore, in this review, the present status of global PHA manufacturers, the advantages of the production of PHAs using marine-origin microorganisms (with their productivity potential) and further required research and development strategies for cost-competitive production of PHAs using marine-based microorganisms were investigated. In this review, PHAs produced from marine microorganisms were found to have similar physical properties to petroleum-based plastics but with several advantages that can reduce the costs of PHA production. Those advantages include, seawater used in the medium preparation step, and osmotic-based cell lysis technology used in the separation and purification steps. However, the PHA productivities from marine microorganisms showed somewhat lower efficiencies than those from the commercial strains isolated from terrestrial environments. In order to solve the problem, further research strategies using synthetic microbiology-based technology, the development of long-term continuous culture technology, and solutions to improve PHA efficiency are required to meet future market demands for alternative bioplastics.

Application of Clay Minerals in the Food Industry (점토광물의 식품산업분야 활용 방안)

  • Park, So-Lim;Lee, So-Young;Kim, Hyo Jin;Lim, Seong-Il;Nam, Young-Do;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.255-260
    • /
    • 2015
  • There are more than 2000 minerals on earth, and it has been implemented in various fields such as environment, architecture, livestock, chemistry, pharmaceuticals. Clay minerals are considered that they can change the physical and chemical properties through the adsorption and release of metal ions. Although domestic deposit of non-metallic mineral resources is approximately ninety-six billion tons, its application is limited and has hardly been used in high value-added industries involved in medicine, medical supplies, and functional food materials. Bentonite and zeolite are already used for cosmetic purposes and also used in living goods and packing materials. However, direct application to the food industry is relatively very rare. Since records regarding the intake of minerals for foods and medicines are found in the old literatures, the utilization of non-metallic minerals as food materials appears to be highly profitable. According to the trends in patent research for food and mineral resources, the company plays a main role for the development of the food containing non-metallic minerals in USA, and the trends confirms that this industry is emerging. Here, we provided the information about domestic and foreign patent trend for food industries involved in mineral resources and the application of mineral resources in the food industries. We also covered the domestic regulation regarding usage of mineral resources in food, and proposed domestic application plan for food production using mineral resources in the future.

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

COMPARISON OF SETTING EXPANSION AND TIME OF ORTHOMTA, PROROOT MTA AND PORTLAND CEMENT (OrthoMTA, ProRoot MTA 그리고 Portland cement의 경화 팽창과 경화 시간 비교)

  • Kang, Ji-Ye;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.229-236
    • /
    • 2011
  • ProRoot MTA(Dentsply Tulsa, U.S.A) which has similar component with Portland cement has setting expansion character and long setting time. Excessive expansion can cause fracture at the apical portion of the root and decreasing of volume stability. And the long setting time makes additional visits for crown restoration and slow setting process of this material can change physical properties itself. In this study, among requirements of root canal filling material(KS P ISO 6876) which is revised at 2008, we investigated the setting time and setting expansion. Objects are recently developed OrthoMTA(BioMTA, Korea), conventional ProRoot white MTA(Dentsply Tulsa, U.S.A) and White portland cement(Union, Korea). The results in setting expansion, OrthoMTA was $0.08{\pm}0.02%$, ProRoot white MTA and White portland cement were each $0.28{\pm}0.06$, $0.80{\pm}0.25%$(p<0.05). The results in setting time, OrthoMTA, ProRoot white MTA, White portland cement were each $307.78{\pm}3.83$ min, $150.44{\pm}2.35$ min, $235.33{\pm}9.07$ min(p<0.05).

Quality Characteristics of Daechu Injeolmi Prepared by Addition of Jujube Powder (대추가루 첨가량을 달리한 대추인절미의 품질 특성)

  • Hong, Jin-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.642-647
    • /
    • 2002
  • This study aimed to find optimum addition of jujube powder to glutinous rice in the preparation of daechu injeolmi (rice cake). The daechu injeolmi added with 10% jujube powder gave the highest moisture content of 52.9% among treatments. Higher amount of jujube powder up to 14% resulted in lower 'L' and higher 'a' values of the cake. Hardness of the cake showed the lowest value for the 10% jujbe-added cake during the storage of 24 hours, while it was so for 14% jujube-added cake after 36 hour storage. Little change was observed with time in the cohesiveness for the cake added with jujube powder in more than in the 8% level. 10% addition of the jujube powder was found to be the best recipe based on the sensory qualities of softness, chewiness, moistness and overall acceptability, which were also well correlated with physical properties.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.